首页> 外文OA文献 >Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors
【2h】

Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors

机译:2006-2013年中国不同霾区气溶胶颗粒化学成分变化及气象因素的贡献

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since there have been individual reports of persistent haze–fog events in January 2013 incentral-eastern China, questions on factors causing the drastic differences inchanges in 2013 from changes in adjacent years have been raised. Changes inmajor chemical components of aerosol particles over the years also remainunclear. The extent of meteorological factors contributing to such changes isyet to be determined. The study intends to present the changes indaily based major water-soluble constituents, carbonaceous species, andmineral aerosol in PM at 13 stations within different haze regions inChina from 2006 to 2013, which are associated with specific meteorological conditionsthat are highly related to aerosol pollution (parameterized as an indexcalled Parameter LinkingAerosol Pollution and Meteorological Elements – PLAM). No obvious changes were found in annual meanconcentrations of these various chemical components and PM in 2013,relative to 2012. By contrast, wintertime mass of these components wasquite different. In Hua Bei Plain (HBP), sulfate, organic carbon (OC), nitrate, ammonium, element carbon (EC),and mineral dust concentrations in winter were approximately 43, 55, 28, 23, 21, and 130 μg m, respectively; these masses wereapproximately 2 to 4 times higher than those in background mass, which alsoexhibited a decline during 2006 to 2010 and then a rise till 2013. Themass of these concentrations and PM, except minerals, respectively,increased by approximately 28 to 117 % and 25 % in January 2013compared with that in January 2012. Thus, persistent haze–fog eventsoccurred in January 2013, and approximately 60 % of this increase incomponent concentrations from 2012 to 2013 can be attributed to severemeteorological conditions in the winter of 2013. In the Yangtze River Delta (YRD) area, winter masses of these components, unlike HBP, have notsignificantly increase since 2010; PLAM were also maintained at a similarlevel without significant changes. In the Pearl River Delta (PRD) area, theregional background concentrations of the major chemical components weresimilar to those in the YRD, accounting for approximately 60–80 % of those in HBP.Since 2010, a decline has been found for winter concentrations, which can bepartially attributable to persistently improving meteorological conditionsand emission cutting with an emphasis on coal combustion in this area.In addition to the scattered and centralized coal combustion for heating,burning biomass fuels contributed to the large increase in concentrations ofcarbonaceous aerosol in major haze regions in winter, except in the PRD. Noobvious changes were found for the proportions of each chemical components ofPM from 2006 to 2013. Among all of the emissions recorded in chemicalcompositions in 2013, coal combustion was still the largest anthropogenicsource of aerosol pollution in various areas in China, with a higher sulfateproportion of PM in most areas of China, and OC was normally rankedthird. PM concentrations increased by approximately 25 % inJanuary of 2013 relative to 2012, which caused persistent haze–fog events inHBP; emissions also reduced by approximately 35 % in Beijing and itsvicinity (BIV) in late autumn of 2014, thereby producing the Asia PacificEconomic Cooperation (APEC) blue (extremely good air quality); thus, one canexpect that the persistent haze–fog events would be reduced significantly inthe BIV, if approx. one-third of the 2013 winter emissions were reduced,which can also be viewed as the upper limit of atmospheric aerosol pollutioncapacity in this area.
机译:自从2013年1月在中国中东部地区有持续的雾霾事件的报告以来,人们提出了一些问题,这些问题导致了2013年与相邻年份变化之间的巨大差异。多年来,气溶胶颗粒主要化学成分的变化仍不清楚。尚待确定造成这种变化的气象因素的程度。该研究旨在呈现2006年至2013年中国不同雾霾地区13个站点每日PM中主要水溶性成分,碳质种类和矿物气溶胶的变化,这些变化与与气溶胶污染高度相关的特定气象条件相关(参数化作为称为“参数链接气溶胶污染和气象元素– PLAM”的索引。与2012年相比,2013年这些化学成分和PM的年平均浓度没有发现明显变化。相比之下,这些成分的冬季质量差异很大。在华北平原(HBP),冬天的硫酸盐,有机碳(OC),硝酸盐,铵,元素碳(EC)和矿物粉尘浓度分别约为43、55、28、23、21和130μgm。 ;这些质量大约是背景质量的2到4倍,在2006年至2010年期间也有所下降,然后一直上升到2013年。这些浓度和PM(除矿物质外)的质量分别增加了约28%至117%和25 2013年1月的百分比为2012年1月的百分比。因此,2013年1月发生了持续的雾霾事件,而2012年至2013年这种成分浓度增加的大约60%可以归因于2013年冬季的严酷气象条件。与三角洲地区不同,三角洲地区的这些部分的冬季质量自2010年以来没有显着增加。 PLAM也保持在相似的水平,没有重大变化。在珠江三角洲(PRD)地区,主要化学成分的区域本底浓度与长三角地区相似,约占HBP的60-80%。自2010年以来,冬季浓度有所下降,可以部分归因于该地区持续改善的气象条件和减排,重点是燃煤。除了分散和集中供热的燃煤外,生物质燃料的燃烧还导致冬季主要雾霾地区碳质气溶胶的浓度大大增加。 ,但珠三角除外。从2006年到2013年,PM的每个化学成分的比例没有明显变化。在2013年化学成分记录的所有排放中,煤炭燃烧仍是中国各个地区最大的人为气溶胶污染源,PM的硫酸盐比例更高在中国大部分地区,OC通常排名第三。与2012年相比,2013年1月的PM浓度增加了约25%,这导致了HBP中持续的雾霾事件。 2014年秋末,北京及其周边地区(BIV)的排放也降低了约35%,从而产生了亚太经济合作组织(APEC)蓝色(空气质量极好);因此,可以预期的是,在BIV中,持续的雾霾事件将显着减少(如果接近)。 2013年冬季排放量减少了三分之一,这也可以看作是该地区大气气溶胶污染能力的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号