首页> 外文OA文献 >Why is the mission impossible? Decoupling the mirror Ginsparg–Wilson fermions in the lattice models for two-dimensional Abelian chiral gauge theories
【2h】

Why is the mission impossible? Decoupling the mirror Ginsparg–Wilson fermions in the lattice models for two-dimensional Abelian chiral gauge theories

机译:为什么任务是不可能的?将镜子GINSPARG-WILSON码头解耦二维雅典手性测量理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the mirror fermion approach with Ginsparg-Wilson fermions, it has beenargued that the mirror fermions do not decouple: in the 345 model with Dirac-and Majorana-Yukawa couplings to XY-spin field, the two-point vertex functionof the (external) gauge field in the mirror sector shows a singular non-localbehavior in the PMS phase. We re-examine why the attempt seems a "Mission:Impossible" in the 345 model. We point out that the effective operators tobreak the fermion number symmetries ('t Hooft operators plus others) in themirror sector do not have sufficiently strong couplings even in the limit oflarge Majorana-Yukawa couplings. We observe also that the type of Majorana massterm considered there is singular in the large limit due to the nature of thechiral projection of the Ginsparg-Wilson fermions, but a slight modificationwithout such singularity is allowed by virtue of the very nature. We thenconsider a simpler four-flavor axial gauge model, the 1$^4$(-1)$^4$ model, inwhich the U(1)$_A$ gauge and Spin(6)(SU(4)) global symmetries prohibit thebilinear terms, but allow the quartic terms to break all the other continuousmirror-fermion symmetries. In the strong-coupling limit of the quarticoperators, the model is well-behaved and simplified. Through Monte-Carlosimulations in the weak gauge coupling limit, we show a numerical evidence thatthe two-point vertex function of the gauge field in the mirror sector shows aregular local behavior, and we still argue that all you need is killing thecontinuous mirror-fermion symmetries with would-be gauge anomalies non-matched.Finally, by gauging a U(1) subgroup of the U(1)$_A$$imes$ Spin(6)(SU(4)) ofthe previous model, we formulate the $2 1 (-1)^3$ chiral gauge model and arguethat the induced fermion measure term satisfies the required locality propertyand provides a solution to the reconstruction theorem.
机译:在镜子徒线接近GINSPARG-WILSON的法米蒙斯中,它已经存在,镜子费米氏虫不会去解耦:在345型号用DIRAC-and Majorana-Yukawa联轴器到XY-Spin领域,(外部)的两点顶点功能镜子扇区中的仪表场显示PMS相中的奇异非亚本色侵入力。我们重新检查为什么在345型号中似乎尝试似乎是“使命:不可能”。我们指出,即使在迄今为止的Majorana-Yukawa联轴器的极限中,有效运营商在Themirror部门中的Fermion号码对称('T Hooft Operator Plus)的耦合也没有足够强大的耦合。我们认为,由于GINSPARG-WILSON池的CHILAL投影的性质,所考虑的MOSSANA MASSTERM的类型在大极限中占有单数,但是通过本质,允许稍微改变这种奇点。我们Thengersider一个简单的四种风味轴向仪表模型,这是1美元$ ^ 4 $( - 1)$ ^ 4 $型号,u(1)$ _ a $ cauge和spin(6)(su(4))全球对称禁止宝石术语,但允许四分之一的术语打破所有其他连续镜射灯的对称。在四静脉器的强耦合极限中,该模型是良好的表现和简化。通过Monte-CarloSimulations在弱规耦合限制下,我们展示了一个数字证据,即镜子扇区中的仪表场的两点顶点函数显示了非本地行为,我们仍然争辩说,所有你需要的是杀死Thecony Mirst-Fermion对称的一切随着愿望的异常不匹配。最后,通过衡量你的U(1)美元_ $$ times $$ times $$旋转(6)(su(4))的u(1)级,我们制定了$ 2 1(1)^ 3美元$手性仪表模型和Arguethat诱导的费米尺度测量术语满足所需的地区职业,为重建定理提供解决方案。

著录项

  • 作者

    Y Kikukawa;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号