首页> 外文OA文献 >Quantum dynamical effects as a singular perturbation for observables in open quasi-classical nonlinear mesoscopic systems
【2h】

Quantum dynamical effects as a singular perturbation for observables in open quasi-classical nonlinear mesoscopic systems

机译:量子动态效应作为开放准古典非线性介观系统中可观察到的奇异扰动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We review our results on a mathematical dynamical theory for observables foropen many-body quantum nonlinear bosonic systems for a very general class ofHamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonianprovide a singular "quantum" perturbation for observables in some "mesoscopic"region of parameters. In particular, quantum effects result in secular terms inthe dynamical evolution, that grow in time. We argue that even for open quantumnonlinear systems in the deep quasi-classical region, these quantum effects cansurvive after decoherence and relaxation processes take place. We demonstratethat these quantum effects in open quantum systems can be observed, forexample, in the frequency Fourier spectrum of the dynamical observables, or inthe corresponding spectral density of noise. Estimates are presented forBose-Einstein condensates, low temperature mechanical resonators, and nonlinearoptical systems prepared in large amplitude coherent states. In particular, weshow that for Bose-Einstein condensate systems the characteristic time ofdeviation of quantum dynamics for observables from the corresponding classicaldynamics coincides with the characteristic time-scale of the well-known quantumnonlinear effect of phase diffusion.
机译:我们针对一类非常普遍的哈密顿量的开放多体量子非线性玻色子系统的可观观测物,用数学动力学理论来回顾我们的结果。我们表明,在哈密顿量中的非二次(非线性)项为参数的某些“介观”区域中的可观测值提供了奇异的“量子”扰动。特别是,量子效应会导致动力学演化的长期趋势,并随时间增长。我们认为,即使对于深准经典区域中的开放量子非线性系统,在发生退相干和弛豫过程之后,这些量子效应也可以存活。我们证明,在开放量子系统中,这些量子效应可以例如在动态可观察物的傅立叶频谱或相应的噪声频谱密度中观察到。给出了在大振幅相干态下制备的玻色-爱因斯坦凝聚物,低温机械谐振器和非线性光学系统的估计值。特别地,我们表明,对于玻色-爱因斯坦凝聚系统,可观测物的量子动力学偏离相应经典动力学的特征时间与众所周知的相扩散量子非线性效应的特征时间尺度相吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号