首页> 外文OA文献 >Modeling the Kinetics, Curing Depth, and Efficacy of Radical-Mediated Photopolymerization: The Role of Oxygen Inhibition, Viscosity, and Dynamic Light Intensity
【2h】

Modeling the Kinetics, Curing Depth, and Efficacy of Radical-Mediated Photopolymerization: The Role of Oxygen Inhibition, Viscosity, and Dynamic Light Intensity

机译:基础介导光聚合的动力学,固化深度和疗效模拟:氧抑制,粘度和动态光强度的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kinetic equations for a modeling system with type-I radical-mediated and type-II oxygen-mediated pathways are derived and numerically solved for the photopolymerization efficacy and curing depth, under the quasi-steady state assumption, and bimolecular termination. We show that photopolymerization efficacy is an increasing function of photosensitizer (PS) concentration (C0) and the light dose at transient state, but it is a decreasing function of the light intensity, scaled by [C0/I0]0.5 at steady state. The curing (or cross-link) depth is an increasing function of C0 and light dose (time × intensity), but it is a decreasing function of the oxygen concentration, viscosity effect, and oxygen external supply rate. Higher intensity results in a faster depletion of PS and oxygen. For optically thick polymers (>100 um), light intensity is an increasing function of time due to PS depletion, which cannot be neglected. With oxygen inhibition effect, the efficacy temporal profile has an induction time defined by the oxygen depletion rate. Efficacy is also an increasing function of the effective rate constant, K = k′/kT0.5, defined by the radical producing rate (k′) and the bimolecular termination rate (kT). In conclusion, the curing depth has a non-linear dependence on the PS concentration, light intensity, and dose and a decreasing function of the oxygen inhibition effect. Efficacy is scaled by [C0/I0]0.5 at steady state. Analytic formulas for the efficacy and curing depth are derived, for the first time, and utilized to analyze the measured pillar height in microfabrication. Finally, various strategies for improved efficacy and curing depth are discussed.
机译:用于型号I型自由基介导和II型氧介导的途径的动力学方程,并以准稳态假设和分散终端在数值上以用于光聚合功效和固化深度的数值求解。我们表明光聚合功效是光敏剂(PS)浓度(CO)浓度(CO)和瞬态状态下的光剂量的越来越多的,但是光强度的降低函数,在稳态处由[C0 / I0] 0.5缩放。固化(或交叉链路)深度是C0和光剂量(时间×强度)的越来越多的函数,但是氧浓度的函数降低,粘度效应和氧外部供应速率。较高的强度导致PS和氧气的速度更快。对于光学厚的聚合物(>100μm),光强度是由于PS耗尽引起的时间越来越多的时间,这不能被忽略。随着氧抑制效应,功效颞型轮廓具有由氧耗尽率定义的诱导时间。功效也是有效率常数k = k'/ kt0.5的越来越多的函数,由自由基产生速率(k')和双分子终止率(kt)限定。总之,固化深度具有对PS浓度,光强度和剂量的非线性依赖性以及氧抑制效果的降低函数。功效在稳态下由[C0 / I0] 0.5缩放。首次推导出效果和固化深度的分析公式,并利用用于分析微细加工中的测量的柱高度。最后,讨论了改善疗效和固化深度的各种策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号