首页> 外文OA文献 >Orthogonality preserving property for pairs of operators on Hilbert $$C^*$$-modules
【2h】

Orthogonality preserving property for pairs of operators on Hilbert $$C^*$$-modules

机译:Hilbert $$ C ^ * $$ - 模块的正交持有财产

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the orthogonality preserving property for pairs of mappings oninner product $C^*$-modules extending existing results for a singleorthogonality-preserving mapping. Guided by the point of view that the$C^*$-valued inner product structure of a Hilbert $C^*$-module is determinedessentially by the module structure and by the orthogonality structure, pairsof linear and local orthogonality-preserving mappings are investigated, not apriori bounded. The intuition is that most often $C^*$-linearity andboundedness can be derived from the settings under consideration. Inparticular, we obtain that if $mathscr{A}$ is a $C^{*}$-algebra and $T,S:mathscr{E}longrightarrow mathscr{F}$ are two bounded ${mathscr A}$-linearmappings between full Hilbert $mathscr{A}$-modules, then $langle x, yangle= 0$ implies $langle T(x), S(y)angle = 0$ for all $x, yin mathscr{E}$ ifand only if there exists an element $gamma$ of the center $Z(M({mathscr A}))$of the multiplier algebra $M({mathscr A})$ of ${mathscr A}$ such that$langle T(x), S(y)angle = gamma langle x, yangle$ for all $x, yinmathscr{E}$. In addition, we give some applications.
机译:我们调查Oninner Product的对映射成对的正交性保存属性$ C ^ * $ - 模块扩展了一个单一的间接保留映射的现有结果。通过模块结构和正交结构明确地通过模块结构和正交结构确定的$ C ^ * $ - 值的内部产品结构,调查了线性和局部正交性保留映射的成对的$ C ^ * $ - 值的内部产品结构。 ,而不是apriori界。直觉是,最常是C ^ * $ - 线性度和 - 线性和派对可以从所考虑的设置中派生。 inparticular,如果$ mathscr {a} $是$ c ^ {*} $ - 代数和$ t,s: mathscr {e} longrightarrow mathscr {f} $两个界限$ { mathscr a} $ - full hilbert $ mathscr {a} $ - 模块之间的linearmappings,然后$ langle x,y rangle = 0 $ iclies $ langle t(x),s(y) rangle = 0 $ for all $ X,Y 在 mathscr {E} $ ifand仅当存在一个元素$ 中心$的Z伽玛$(M({ mathscr A}))$的乘数代数$ M({ mathscr甲})$的$ { mathscr A} $使得$ langle T(X),S(y)的 rangle = 伽马 langle的x,y rangle所有$ X,Y 在 mathscr {E $ $。此外,我们提供了一些应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号