首页> 外文OA文献 >Optimal length of R–R interval segment window for Lorenz plot detection of paroxysmal atrial fibrillation by machine learning
【2h】

Optimal length of R–R interval segment window for Lorenz plot detection of paroxysmal atrial fibrillation by machine learning

机译:机器学习阵发性心房颤动的Lorenz情节检测R-R间隔窗口的最佳长度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Heartbeat interval Lorenz plot (LP) imaging is a promising method for detecting atrial fibrillation (AF) in long-term monitoring, but the optimal segment window length for the LP images is unknown. We examined the performance of AF detection by LP images with different segment window lengths by machine learning with convolutional neural network (CNN). LP images with a 32 × 32-pixel resolution of non-overlapping segments with lengths between 10 and 500 beats were created from R–R intervals of 24-h ECG in 52 patients with chronic AF and 58 non-AF controls as training data and in 53 patients with paroxysmal AF and 52 non-AF controls as test data. For each segment window length, discriminant models were made by fivefold cross-validation subsets of the training data and its classification performance was examined with the test data. Results In machine learning with the training data, the averages of cross-validation scores were 0.995 and 0.999 for 10 and 20-beat LP images, respectively, and > 0.999 for 50 to 500-beat images. The classification of test data showed good performance for all segment window lengths with an accuracy from 0.970 to 0.988. Positive likelihood ratio for detecting AF segments, however, showed a convex parabolic curve linear relationship to log segment window length and peaked at 85 beats, while negative likelihood ratio showed monotonous increase with increasing segment window length. Conclusions This study suggests that the optimal segment window length that maximizes the positive likelihood ratio for detecting paroxysmal AF with 32 × 32-pixel LP image is 85 beats.
机译:抽象背景心跳间隔洛伦茨拓扑(LP)成像是用于检测心房纤维性颤动(AF)在长期监测一个有前途的方法,但对于LP图像的最佳段窗口长度是未知的。我们检查AF检测的通过用不同的段窗长度由机器学习用卷积神经网络(CNN)LP图像的性能。用的非重叠区段10级500次之间的长度32×32像素分辨率LP图像是从24小时的ECG的R-R间在52例慢性AF和58的非AF控制作为训练数据创建并在53例阵发性AF和52的非AF控制作为测试数据。对于每个段窗口长度,判别模型由训练数据的五倍交叉验证的子集制成,与所述测试数据检查其分类性能。结果机器与训练数据学习,交叉验证的分数的平均值分别为0.995和0.999 10和20拍LP图像,和> 0.999为50〜500拍图像。测试数据的分类结果显示与从0.970到0.988的精度所有段窗长度良好的性能。用于检测AF的段阳性似然比,然而,呈凸抛物线线性关系登录段窗口长度,并在85次达到高峰,而阴性似然比表现出与增加段窗口长度单调增加。结论这项研究表明,最大化用于检测阵发性AF与32×32像素的图像LP阳性似然比的最佳段窗口长度是85次。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号