首页> 外文OA文献 >A Feature Tensor-Based Epileptic Detection Model Based on Improved Edge Removal Approach for Directed Brain Networks
【2h】

A Feature Tensor-Based Epileptic Detection Model Based on Improved Edge Removal Approach for Directed Brain Networks

机译:基于特征张于基于脑网络的改进边缘去除方法的特征张解钝化检测模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electroencephalograph (EEG) plays a significant role in the diagnostics process of epilepsy, but the detection rate is unsatisfactory when the length of interictal EEG signals is relatively short. Although the deliberate attacking theories for undirected brain network based on node removal method can extract potential network features, the node removal method fails to sufficiently consider the directionality of brain electrical activities. To solve the problems above, this study proposes a feature tensor-based epileptic detection method of directed brain networks. First, a directed functional brain network is constructed by calculating the transfer entropy of EEG signals between different electrodes. Second, the edge removal method is used to imitate the disruptions of brain connectivity, which may be related to the disorder of brain diseases, to obtain a sequence of residual networks. After that, topological features of these residual networks are extracted based on graph theory for constructing a five-way feature tensor. To exploit the inherent interactions among multiple modes of the feature tensor, this study uses the Tucker decomposition method to get a core tensor which is finally reshaped into a vector and input into the support vectors machine (SVM) classifier. Experiment results suggest that the proposed method has better epileptic screening performance for short-term interictal EEG data.
机译:脑电图(EEG)在癫痫的诊断过程中起着重要作用,但是当交织EEG信号的长度相对较短时,检测率是不令人满意的。虽然基于节点去除方法的无向脑网络的故意攻击理论可以提取潜在的网络特征,但节点去除方法无法充分考虑脑电活动的方向性。为了解决上述问题,本研究提出了一种基于特征的脑网络癫痫检测方法。首先,通过计算不同电极之间的EEG信号的传输熵来构建定向功能脑网络。其次,边缘去除方法用于模仿脑连接的破坏,这可能与脑疾病的病症有关,以获得一系列剩余网络。之后,基于图形理论来提取这些剩余网络的拓扑特征,用于构建五通特征张量。为了利用特征Tensor的多种模式之间的固有交互,本研究使用Tucker分解方法获取核心张量,该核心扭矩最终被重新装入向量并输入到支持向量机(SVM)分类器中。实验结果表明,该方法具有更好的癫痫筛选性能,用于短期嵌入脑电图数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号