首页> 外文OA文献 >A cell-based smoothed finite element method for kinematic limit analysis
【2h】

A cell-based smoothed finite element method for kinematic limit analysis

机译:一种基于电池的运动限制分析的平滑有限元方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new numerical procedure for kinematic limit analysis problems, which incorporates the cell-based smoothed finite element method with second-order cone programming. The application of a strain smoothing technique to the standard displacement finite element both rules out volumetric locking and also results in an efficient method that can provide accurate solutions with minimal computational effort. The non-smooth optimization problem is formulated as a problem of minimizing a sum of Euclidean norms, ensuring that the resulting optimization problem can be solved by an efficient second-order cone programming algorithm. Plane stress and plane strain problems governed by the von Mises criterion are considered, but extensions to problems with other yield criteria having a similar conic quadratic form or 3D problems can be envisaged.
机译:本文提出了一种用于运动极限分析问题的新数值程序,该程序将基于单元的平滑有限元方法与二阶锥规划相结合。将应变平滑技术应用于标准位移有限元不仅可以消除体积锁定,而且可以提供一种有效的方法,该方法可以以最小的计算量提供准确的解决方案。将非平滑优化问题表述为使欧几里得范数之和最小化的问题,从而确保可以通过有效的二阶锥规划算法来解决所得的优化问题。考虑了由冯·米塞斯(von Mises)准则控制的平面应力和平面应变问题,但可以设想扩展具有类似圆锥二次形的其他屈服准则问题或3D问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号