首页> 外文OA文献 >The role of mitochondrial restructuring in neuronal calcium homeostasis and excitotoxicity
【2h】

The role of mitochondrial restructuring in neuronal calcium homeostasis and excitotoxicity

机译:线粒体重组在神经元钙稳态和兴奋毒性中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mitochondrial Ca2+ buffering is an important physiological modulator of neuronal signaling and bioenergetics, but this propensity toward Ca2+ regulation proves pathological during excitotoxic insult. Specifically, excessive mitochondrial Ca2+ uptake is a key component of glutamate toxicity within the penumbra surrounding the ischemic core following stroke. This mitochondrial toxicity and Ca2+ dyshomeostasis may be visualized in real time as delayed calcium deregulation (DCD). DCD is a predictor of neuronal, excitoxic death, and is composed of three phases: 1) an initial response; 2) a latent period of elevated, but stable cytosolic Ca2+; and 3) failure of mitochondrial Ca2+ retention, termed deregulation. The duration of the latent period is an index of neuronal resistance.Mitochondria are dynamic organelles that rapidly and reversibly undergo fission and fusion (MFF). MFF is tightly regulated by the phosphoregulation of fission inducing Drp1 at serine 656. Drp1-S656 phosphorelation is mediated by PKA/AKAP1, and it is dephosphorylated by PP2A/Bβ2. Phosphorylation of Drp1-S656 inactivates this contractile GTPase resulting in inhibition of mitochondrial fission and a shift toward elongated mitochondria. This PKA/AKAP1 dependent Drp1-S656 phosphorylation has proven to be neuroprotective. Likewise, attenuation of PP2A/Bβ2 signaling enhances neuronal survival during ischemia and excitotoxic insult.Based on the mitochondrial buffering role in excitotoxicity and MFF modulation of neuronal survival, we began investigating the role of Ca2+ buffering as a function of MFF during glutamate toxicity. Noted above, resistance to excitoticity is visualized by the duration of the DCD latent period. Overexpression of AKAP1 in cultured hippocampal neurons greatly prolonged DCD latency in a PKA dependent manner, while Bβ2 ablation prolonged DCD latency by hours. Pharmacological modulation of PKA required PDE4 inhibition to reproduce the AKAP1 observations. Preliminary experiments studying the effect of Bβ2 overexpression on matrix Ca2+ load suggests possible mechanism of MFF regulated of matrix Ca2+ accumulation. Using mtPericam DRG neurons as a model system for individual mitochondrial Ca2+ recording, we discovered impaired extrusion kinetics in mitochondria fragmented by both Drp1 and Bβ2 overexpression. Ca2+ uptake was comparable to that of control. Extreme elongation of mitochondria via dominant negative Drp1-K38A enhanced recovery.Understanding these observations, however, requires knowledge of the mitochondrial Ca2+ buffering mechanism. Mitochondrial uptake candidates include MCU and ccdc109b. Our neuronal characterization of MCU confirms a role in mitochondrial Ca2+ buffering, but not a requirement; other components must be involved. Ccdc109b remains an inconclusive candidate, but may be an important regulator of MCU. Mitochondrial efflux transporters include Letm1 and NCLX. Though Letm1 observations are hindered by control artifact, preliminary evidence supports a role in extrusion. The role of NCLX is complicated by possible tissue specificity. Functional expression experiments utilizing Na+ free Li+ external solution suggests absence of NCLX in hippocampal neurons; DRG neurons were capable of Li+ exchange. The above observations confirm the significance of mitochondrial Ca2+ extrusion in neuronal survival. Understanding the mechanisms and regulation of mitochondrial Ca2+ transport has the potential to provide novel therapeutic targets in pathologies of excitotoxic etiology.
机译:线粒体的Ca 2+缓冲是神经元信号和生物能量学的重要的生理调节剂,但这种倾向朝向钙调节兴奋性毒性损伤期间证明病理。具体而言,过量的线粒体的Ca 2+摄取谷氨酸毒性的周围中风缺血核心半影内的关键部件。此线粒体毒性和Ca2 + dyshomeostasis可以实时作为延迟钙失调(DCD)进行可视化。 DCD是神经元,excitoxic死亡的预测因子,和由三个阶段:1)的初始响应; 2)升高,但稳定的细胞溶质Ca 2+的潜伏期;和3)线粒体的Ca 2+保留的故障,称为解除管制。潜伏期的持续时间是神经元resistance.Mitochondria的索引是动态的细胞器快速和可逆地发生裂变和融合(MFF)。 MFF紧密由裂变在丝氨酸656 DRP1-S656 phosphorelation诱导DRP1的phosphoregulation通过PKA / AKAP1介导的调节,并且它是由PP2A /Bβ2脱磷酸化。 DRP1-S656的磷酸化失活导致线粒体裂变的抑制和朝向细长线粒体移位这个收缩GTP酶。这PKA / AKAP1依赖DRP1-S656的磷酸化已被证明是神经保护作用。同样,PP2A /Bβ2信号增强缺血和兴奋毒性insult.Based在兴奋性毒性和神经元存活的MFF调节线粒体的缓冲作用,在神经元存活的衰减,我们开始研究的钙离子缓冲谷氨酸毒性期间MFF功能的作用。如上所述,为了excitoticity电阻由DCD潜伏期的持续时间可视化。在培养的海马神经元AKAP1的过表达大大延长DCD延迟的依赖于PKA的方式,而Bβ2消融延长DCD延迟由小时。 PKA的药理调制所需要PDE4抑制重现AKAP1观测。初步实验研究Bβ2过表达对矩阵的Ca 2+负荷的效果表明调节矩阵的Ca2 +积累的MFF的可能机制。使用mtPericam DRG神经元作为个体的线粒体钙记录一个模型系统,我们在双方DRP1和Bβ2过度支离破碎的线粒体受损发现了挤压动力学。钙摄取媲美控制。通过显性负DRP1-K38A线粒体的极端伸长增强recovery.Understanding这些观察,但是,需要线粒体的Ca 2+缓冲机构的知识。线粒体摄取的候选人包括MCU和ccdc109b。我们的MCU的神经表征证实线粒体钙缓冲的作用,但并不是必须的;其他组件都必须参与。 Ccdc109b仍然是一个不确定的人选,但可能是MCU的一个重要调节器。线粒体流出转运包括Letm1和NCLX。虽然Letm1观察由控制人为阻碍,初步证据支持在挤压的作用。 NCLX的作用是可能的组织特异性复杂。利用的Na +不含Li +外部溶液表明在海马神经元中不存在NCLX的功能性表达实验; DRG神经元能锂离子交换。上述观察证实线粒体钙挤压的神经元存活的意义。理解的机制和线粒体钙转运调控必须在兴奋性毒性病因病状提供新的治疗目标的潜力。

著录项

  • 作者

    Patrick Ryan Houlihan;

  • 作者单位
  • 年度 -1
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号