首页> 外文学位 >The role of mitochondrial restructuring in neuronal calcium homeostasis and excitotoxicity.
【24h】

The role of mitochondrial restructuring in neuronal calcium homeostasis and excitotoxicity.

机译:线粒体重组在神经元钙稳态和兴奋性毒性中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Mitochondrial Ca2+ buffering is an important physiological modulator of neuronal signaling and bioenergetics, but this propensity toward Ca2+ regulation proves pathological during excitotoxic insult. Specifically, excessive mitochondrial Ca2+ uptake is a key component of glutamate toxicity within the penumbra surrounding the ischemic core following stroke. This mitochondrial toxicity and Ca2+ dyshomeostasis may be visualized in real time as delayed calcium deregulation (DCD). DCD is a predictor of neuronal, excitoxic death, and is composed of three phases: 1) an initial response; 2) a latent period of elevated, but stable cytosolic Ca2+; and 3) failure of mitochondrial Ca 2+ retention, termed deregulation. The duration of the latent period is an index of neuronal resistance.;Mitochondria are dynamic organelles that rapidly and reversibly undergo fission and fusion (MFF). MFF is tightly regulated by the phosphoregulation of fission inducing Drp1 at serine 656. Drp1-S656 phosphorelation is mediated by PKA/AKAP1, and it is dephosphorylated by PP2A/Bβ2. Phosphorylation of Drp1-S656 inactivates this contractile GTPase resulting in inhibition of mitochondrial fission and a shift toward elongated mitochondria. This PKA/AKAP1 dependent Drp1-S656 phosphorylation has proven to be neuroprotective. Likewise, attenuation of PP2A/Bβ2 signaling enhances neuronal survival during ischemia and excitotoxic insult.;Based on the mitochondrial buffering role in excitotoxicity and MFF modulation of neuronal survival, we began investigating the role of Ca2+ buffering as a function of MFF during glutamate toxicity. Noted above, resistance to excitoticity is visualized by the duration of the DCD latent period. Overexpression of AKAP1 in cultured hippocampal neurons greatly prolonged DCD latency in a PKA dependent manner, while Bβ2 ablation prolonged DCD latency by hours. Pharmacological modulation of PKA required PDE4 inhibition to reproduce the AKAP1 observations. Preliminary experiments studying the effect of Bβ2 overexpression on matrix Ca2+ load suggests possible mechanism of MFF regulated of matrix Ca2+ accumulation. Using mtPericam DRG neurons as a model system for individual mitochondrial Ca2+ recording, we discovered impaired extrusion kinetics in mitochondria fragmented by both Drp1 and Bβ2 overexpression. Ca2+ uptake was comparable to that of control. Extreme elongation of mitochondria via dominant negative Drp1-K38A enhanced recovery.;Understanding these observations, however, requires knowledge of the mitochondrial Ca2+ buffering mechanism. Mitochondrial uptake candidates include MCU and ccdc109b. Our neuronal characterization of MCU confirms a role in mitochondrial Ca2+ buffering, but not a requirement; other components must be involved. Ccdc109b remains an inconclusive candidate, but may be an important regulator of MCU. Mitochondrial efflux transporters include Letm1 and NCLX. Though Letm1 observations are hindered by control artifact, preliminary evidence supports a role in extrusion. The role of NCLX is complicated by possible tissue specificity. Functional expression experiments utilizing Na+ free Li+ external solution suggests absence of NCLX in hippocampal neurons; DRG neurons were capable of Li+ exchange. The above observations confirm the significance of mitochondrial Ca2+ extrusion in neuronal survival. Understanding the mechanisms and regulation of mitochondrial Ca2+ transport has the potential to provide novel therapeutic targets in pathologies of excitotoxic etiology.
机译:线粒体Ca2 +缓冲液是神经元信号传导和生物能的重要生理调节剂,但是这种对Ca2 +调节的倾向证明在兴奋性毒性损伤期间是病理性的。具体来说,中风后围绕缺血核心的半影内线粒体Ca2 +的过量摄取是谷氨酸毒性的关键组成部分。线粒体毒性和Ca2 +异位稳态可实时显示为延迟钙失调(DCD)。 DCD是神经元兴奋性死亡的预测因子,由三个阶段组成:1)初始反应; 2)潜在的升高但稳定的胞质Ca2 +潜伏期; 3)线粒体Ca 2+保留失败,称为失调。潜伏期的持续时间是神经元抵抗力的指标。线粒体是动态细胞器,可快速可逆地经历裂变和融合(MFF)。 MFF由在丝氨酸656上的裂变诱导Drp1的磷酸化紧密调节。Drp1-S656的磷酸化由PKA / AKAP1介导,并由PP2A /Bβ2磷酸化。 Drp1-S656的磷酸化使这种收缩性GTPase失活,从而导致线粒体裂变的抑制和向伸长的线粒体的转移。已证明这种依赖PKA / AKAP1的Drp1-S656磷酸化具有神经保护作用。同样,PP2A /Bβ2信号的减弱可增强缺血和兴奋性毒性损伤时的神经元存活。基于线粒体在兴奋性毒性中的缓冲作用和神经元存活的MFF调节,我们开始研究Ca2 +缓冲液在谷氨酸毒性中作为MFF的作用。如上所述,通过DCD潜伏期的持续时间可以看到对兴奋性的抵抗力。 AKAP1在培养的海马神经元中的过表达以PKA依赖性方式大大延长了DCD潜伏期,而Bβ2消融则延长了数小时的DCD潜伏期。 PKA的药理调节需要抑制PDE4才能重现AKAP1的观察结果。初步实验研究了Bβ2过表达对基质Ca2 +负荷的影响,表明MFF调控基质Ca2 +积累的可能机制。使用mtPericam DRG神经元作为单个线粒体Ca2 +记录的模型系统,我们发现Drp1和Bβ2过表达使线粒体的挤出动力学受损。 Ca2 +吸收与对照相当。通过显性阴性Drp1-K38A极端延长线粒体的恢复能力。;然而,要了解这些发现,就需要了解线粒体Ca2 +缓冲机制。线粒体吸收候选物包括MCU和ccdc109b。我们对MCU的神经元特征证实了其在线粒体Ca2 +缓冲中的作用,但不是必需的。必须涉及其他组件。 Ccdc109b仍是一个不确定的候选者,但可能是MCU的重要调节器。线粒体外排转运蛋白包括Letm1和NCLX。尽管Letm1的观察受到控制伪影的阻碍,但初步证据支持了挤压的作用。 NCLX的作用因可能的组织特异性而变得复杂。利用不含Na +的Li +外部溶液的功能性表达实验表明海马神经元中不存在NCLX。 DRG神经元能够进行Li +交换。上述观察证实了线粒体Ca 2+挤出在神经元存活中的重要性。了解线粒体Ca 2+转运的机制和调控有可能在兴奋性毒性病因学的病理学中提供新的治疗靶标。

著录项

  • 作者

    Houlihan, Patrick Ryan.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Health Sciences Pharmacology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号