首页> 外文OA文献 >Classification of Partial Discharge Signals by Combining Adaptive Local Iterative Filtering and Entropy Features
【2h】

Classification of Partial Discharge Signals by Combining Adaptive Local Iterative Filtering and Entropy Features

机译:通过组合自适应局部迭代滤波和熵特征来分类局部放电信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electromagnetic Interference (EMI) is a technique for capturing Partial Discharge (PD) signals in High-Voltage (HV) power plant apparatus. EMI signals can be non-stationary which makes their analysis difficult, particularly for pattern recognition applications. This paper elaborates upon a previously developed software condition-monitoring model for improved EMI events classification based on time-frequency signal decomposition and entropy features. The idea of the proposed method is to map multiple discharge source signals captured by EMI and labelled by experts, including PD, from the time domain to a feature space, which aids in the interpretation of subsequent fault information. Here, instead of using only one permutation entropy measure, a more robust measure, called Dispersion Entropy (DE), is added to the feature vector. Multi-Class Support Vector Machine (MCSVM) methods are utilized for classification of the different discharge sources. Results show an improved classification accuracy compared to previously proposed methods. This yields to a successful development of an expert’s knowledge-based intelligent system. Since this method is demonstrated to be successful with real field data, it brings the benefit of possible real-world application for EMI condition monitoring.
机译:电磁干扰(EMI)是一种用于测量局部放电(PD)信号的技术,该信号由于绝缘性能下降而在运行中的电机,发电机和其他辅助设备中产生。评估PD可帮助减少机器停机时间并避免高昂的更换和维护成本。由于EMI信号的非平稳特性,其分析起来可能很复杂。本文提出了一种软件状态监测模型,并开发了一种适用于非平稳EMI信号的新颖特征提取技术。该方法将多个放电源信号(包括PD)从时域映射到特征空间,以帮助后续故障信息的解释。结果显示出在分类不同排放源方面的优异性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号