首页> 外文OA文献 >Automatic Optic Disc Detection in Color Retinal Images by Local Feature Spectrum Analysis
【2h】

Automatic Optic Disc Detection in Color Retinal Images by Local Feature Spectrum Analysis

机译:通过本地特征谱分析自动视镜椎间盘检测彩色视网膜图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The optic disc is a key anatomical structure in retinal images. The ability to detect optic discs in retinal images plays an important role in automated screening systems. Inspired by the fact that humans can find optic discs in retinal images by observing some local features, we propose a local feature spectrum analysis (LFSA) that eliminates the influence caused by the variable spatial positions of local features. In LFSA, a dictionary of local features is used to reconstruct new optic disc candidate images, and the utilization frequencies of every atom in the dictionary are considered as a type of “spectrum” that can be used for classification. We also employ the sparse dictionary selection approach to construct a compact and representative dictionary. Unlike previous approaches, LFSA does not require the segmentation of vessels, and its method of considering the varying information in the retinal images is both simple and robust, making it well-suited for automated screening systems. Experimental results on the largest publicly available dataset indicate the effectiveness of our proposed approach.
机译:光盘是视网膜图像中的关键解剖结构。检测视网膜图像中的光盘的能力在自动筛选系统中起重要作用。灵感来自于人类可以通过观察一些局部特征来发现视网膜图像中的视图,我们提出了局部特征频谱分析(LFSA),可以消除由局部特征的可变空间位置引起的影响。在LFSA中,本地特征的字典用于重建新的光盘候选图像,并且字典中每个原子的利用频率被认为是可用于分类的“频谱”的类型。我们还采用了稀疏的字典选择方法来构建紧凑且代表性的词典。与以前的方法不同,LFSA不需要血管的分割,并且其考虑视网膜图像中不同信息的方法既简单又坚固,使其适用于自动筛选系统。最大公共数据集的实验结果表明了我们建议的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号