首页> 外文OA文献 >Viral pandemic preparedness: A pluripotent stem cell‐based machine‐learning platform for simulating SARS‐CoV ‐2 infection to enable drug discovery and repurposing
【2h】

Viral pandemic preparedness: A pluripotent stem cell‐based machine‐learning platform for simulating SARS‐CoV ‐2 infection to enable drug discovery and repurposing

机译:病毒大流行准备:用于模拟SARS-COV -2感染的多能干细胞的机器学习平台,以实现药物发现和重新展示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Infection with the SARS‐CoV‐2 virus has rapidly become a global pandemic for which we were not prepared. Several clinical trials using previously approved drugs and drug combinations are urgently under way to improve the current situation. A vaccine option has only recently become available, but worldwide distribution is still a challenge. It is imperative that, for future viral pandemic preparedness, we have a rapid screening technology for drug discovery and repurposing. The primary purpose of this research project was to evaluate the DeepNEU stem‐cell based platform by creating and validating computer simulations of artificial lung cells infected with SARS‐CoV‐2 to enable the rapid identification of antiviral therapeutic targets and drug repurposing. The data generated from this project indicate that (a) human alveolar type lung cells can be simulated by DeepNEU (v5.0), (b) these simulated cells can then be infected with simulated SARS‐CoV‐2 virus, (c) the unsupervised learning system performed well in all simulations based on available published wet lab data, and (d) the platform identified potentially effective anti‐SARS‐CoV2 combinations of known drugs for urgent clinical study. The data also suggest that DeepNEU can identify potential therapeutic targets for expedited vaccine development. We conclude that based on published data plus current DeepNEU results, continued development of the DeepNEU platform will improve our preparedness for and response to future viral outbreaks. This can be achieved through rapid identification of potential therapeutic options for clinical testing as soon as the viral genome has been confirmed.
机译:摘要感染了SARS冠状病毒2型病毒已迅速成为全球性流行病对我们并没有准备好。使用以前批准的药物和药物组合几项临床试验都迫切正在进行改善目前的状况。疫苗选项只在最近变得可用,但全球分销仍然是一个挑战。当务之急是,为未来的病毒大流行的准备,我们有一个快速筛查技术,药物开发和再利用。该研究项目的主要目的是评估通过创建和验证感染SARS-COV-2,使抗病毒治疗靶点和药物再利用快速识别人工肺细胞的计算机模拟的DeepNEU干细胞的平台。从这个项目产生的数据表明,(a)人肺泡型肺细胞可以通过DeepNEU(V5.0),(B),则这些模拟细胞可感染模拟SARS-CoV的-2病毒,(c)中待模拟的无监督学习系统在所有模拟根据现有公布的湿实验室数据,和(d)识别出的已知药物的潜在有效的抗SARS-COV2组合紧急临床研究的平台表现良好。数据还表明,DeepNEU可以识别加急潜在的疫苗开发的治疗靶点。我们的结论是基于公布的数据加上当前DeepNEU结果,继续DeepNEU平台的发展将提高我们的防备和应对未来的病毒爆发。这可以通过对临床试验潜在的治疗选项快速识别,一旦病毒基因组已被证实可以实现。

著录项

  • 作者

    Sally Esmail; Wayne Danter;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号