首页> 外文OA文献 >Rapid Fabrication of Microfluidic Devices for Biological Mimicking: A Survey of Materials and Biocompatibility
【2h】

Rapid Fabrication of Microfluidic Devices for Biological Mimicking: A Survey of Materials and Biocompatibility

机译:用于生物模拟的微流体装置的快速制造:材料和生物相容性调查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microfluidics is an essential technique used in the development of in vitro models for mimicking complex biological systems. The microchip with microfluidic flows offers the precise control of the microenvironment where the cells can grow and structure inside channels to resemble in vivo conditions allowing a proper cellular response investigation. Hence, this study aimed to develop low-cost, simple microchips to simulate the shear stress effect on the human umbilical vein endothelial cells (HUVEC). Differentially from other biological microfluidic devices described in the literature, we used readily available tools like heat-lamination, toner printer, laser cutter and biocompatible double-sided adhesive tapes to bind different layers of materials together, forming a designed composite with a microchannel. In addition, we screened alternative substrates, including polyester-toner, polyester-vinyl, glass, Permanox® and polystyrene to compose the microchips for optimizing cell adhesion, then enabling these microdevices when coupled to a syringe pump, the cells can withstand the fluid shear stress range from 1 to 4 dyne cm2. The cell viability was monitored by acridine orange/ethidium bromide (AO/EB) staining to detect live and dead cells. As a result, our fabrication processes were cost-effective and straightforward. The materials investigated in the assembling of the microchips exhibited good cell viability and biocompatibility, providing a dynamic microenvironment for cell proliferation. Therefore, we suggest that these microchips could be available everywhere, allowing in vitro assays for daily laboratory experiments and further developing the organ-on-a-chip concept.
机译:微流体是在体外模型的开发用于模拟复杂的生物系统的基本技术。与微流体微芯片提供流动微环境,其中所述细胞可以内通道增长和结构在体内条件允许一个适当的细胞应答调查类似于的精确控制。因此,本研究的目的是开发低成本,简单的微芯片,以模拟在人脐静脉内皮细胞(HUVEC)上的剪切应力的作用。差异从文献中描述的其他生物微流体装置中,我们使用容易获得的工具,如热层压,调色剂的打印机,激光切割器和生物相容的双面胶粘带,以不同的材料层粘合在一起,形成一个复合物设计用的微通道。此外,我们筛选替代底物,包括聚酯调色剂,聚酯 - 乙烯,玻璃,Permanox®和聚苯乙烯组成用于优化细胞粘附,则当连接到注射器泵使这些微装置,微芯片,所述细胞能承受流体剪切应力范围从1至4达因厘米2。细胞活力用吖啶橙/溴化乙锭(AO / EB)染色来检测活的和死的细胞监测。其结果是,我们的制造工艺具有成本效益和简单。在微芯片的组装所研究的材料显示出良好的细胞生存力和生物相容性,提供用于细胞增殖动态的微环境。因此,我们认为,这些微芯片可能是随处可见,使体外试验的日常实验室实验和进一步发展的器官上的单芯片概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号