首页> 外文OA文献 >A graph-based evidence synthesis approach to detecting outbreak clusters: An application to dog rabies
【2h】

A graph-based evidence synthesis approach to detecting outbreak clusters: An application to dog rabies

机译:一种基于图的证据综合方法来检测爆发簇:狗狂犬病的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Early assessment of infectious disease outbreaks is key to implementing timely and effective control measures. In particular, rapidly recognising whether infected individuals stem from a single outbreak sustained by local transmission, or from repeated introductions, is crucial to adopt effective interventions. In this study, we introduce a new framework for combining several data streams, e.g. temporal, spatial and genetic data, to identify clusters of related cases of an infectious disease. Our method explicitly accounts for underreporting, and allows incorporating preexisting information about the disease, such as its serial interval, spatial kernel, and mutation rate. We define, for each data stream, a graph connecting all cases, with edges weighted by the corresponding pairwise distance between cases. Each graph is then pruned by removing distances greater than a given cutoff, defined based on preexisting information on the disease and assumptions on the reporting rate. The pruned graphs corresponding to different data streams are then merged by intersection to combine all data types; connected components define clusters of cases related for all types of data. Estimates of the reproduction number (the average number of secondary cases infected by an infectious individual in a large population), and the rate of importation of the disease into the population, are also derived. We test our approach on simulated data and illustrate it using data on dog rabies in Central African Republic. We show that the outbreak clusters identified using our method are consistent with structures previously identified by more complex, computationally intensive approaches.
机译:早期评估传染病爆发是实施及时有效的控制措施的关键。特别是,迅速识别感染的个体是否源于局部传播,或者从重复介绍的单一爆发是至关重要的,这是采用有效干预的至关重要。在这项研究中,我们介绍了一种结合多个数据流的新框架,例如,时间,空间和遗传数据,鉴定传染病的相关病例簇。我们的方法明确地占据了疏忽的账户,并允许包含有关疾病的预先存在的信息,例如其串行间隔,空间核和突变率。对于每个数据流,我们定义了连接所有情况的图形,边缘由案例之间的相应成对距离加权。然后通过除去大于给定截止的距离来修剪每个曲线,基于对报告率的疾病和假设的预先存在的信息来定义。然后通过交叉点合并对应于不同数据流的修剪图来组合所有数据类型;连接的组件定义与所有类型数据相关的案例集群。还衍生出估计生殖数量(在大群中感染的次要病例的平均案件数)以及疾病进入人群的速率。我们在模拟数据上测试我们的方法,并使用中非共和国的狗狂犬病数据说明它。我们表明,使用我们的方法识别的爆发群体与先前通过更复杂的计算密集型方法标识的结构一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号