首页> 外文OA文献 >Online power quality disturbance detection by support vector machine in smart meter
【2h】

Online power quality disturbance detection by support vector machine in smart meter

机译:在智能电表中支持向量机的在线电能质量扰动检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Power quality assessment is an important performance measurement in smart grids. Utility companies are interested in power quality monitoring even in the low level distribution side such as smart meters. Addressing this issue, in this study, we propose segregation of the power disturbance from regular values using one-class support vector machine (OCSVM). To precisely detect the power disturbances of a voltage wave, some practical wavelet filters are applied. Considering the unlimited types of waveform abnormalities, OCSVM is picked as a semi-supervised machine learning algorithm which needs to be trained solely on a relatively large sample of normal data. This model is able to automatically detect the existence of any types of disturbances in real time, even unknown types which are not available in the training time. In the case of existence, the disturbances are further classified into different types such as sag, swell, transients and unbalanced. Being light weighted and fast, the proposed technique can be integrated into smart grid devices such as smart meter in order to perform a real-time disturbance monitoring. The continuous monitoring of power quality in smart meters will give helpful insight for quality power transmission and management.
机译:电力质量评估是智能电网中的重要性能测量。公用事业公司对电力质量监控感兴趣,即使在智能电表等低级配电侧也是如此。在本研究中解决此问题,我们使用单级支持向量机(OCSVM)提出了从常规值的常规值的隔离。为了精确地检测电压波的功率干扰,施加了一些实用的小波滤波器。考虑到无限类型的波形异常,OCSVM被挑选为半监控机器学习算法,需要完全培训在相对大的正常数据样本上。该模型能够在训练时间中实时自动检测任何类型的干扰,甚至是未知的类型,这些类型在训练中不可用。在存在的情况下,扰动进一步分为不同类型,例如凹凸,膨胀,瞬变和不平衡。轻度和快速,所提出的技术可以集成到智能电网等智能电表中,以执行实时扰动监测。智能电表中电能质量的持续监测将有助于了解优质电力传输和管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号