首页> 外文OA文献 >Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator
【2h】

Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator

机译:用于预测热电发电机性能的组合有限元和人工神经网络模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermoelectric generators (TEGs) are rapidly becoming the mainstream technology for converting thermal energy into electrical energy. The rise in the continuous deployment of TEGs is related to advancements in materials, figure of merit, and methods for module manufacturing. However, rapid optimization techniques for TEGs have not kept pace with these advancements, which presents a challenge regarding tailoring the device architecture for varying operating conditions. Here, we address this challenge by providing artificial neural network (ANN) models that can predict TEG performance on demand. Out of the several ANN models considered for TEGs, the most efficient one consists of two hidden layers with six neurons in each layer. The model predicted TEG power with an accuracy of ±0.1 W, and TEG efficiency with an accuracy of ±0.2%. The trained ANN model required only 26.4 ms per data point for predicting TEG performance against the 6.0 minutes needed for the traditional numerical simulations.
机译:热电发电机(TEGS)正在迅速成为将热能转化为电能的主流技术。连续部署TEG的上升与模块制造材料的材料,优点和方法的进步有关。然而,TEGS的快速优化技术与这些进步没有保持速度,这提出了针对不同操作条件定制设备架构的挑战。在这里,我们通过提供可以通过需求预测TEG性能的人工神经网络(ANN)模型来解决这一挑战。出于考虑到TEGS的几个ANN模型中,最有效的是,最有效的是两个隐藏层,每层六个神经元。该模型预测TEG功率,精度为±0.1W,TEG效率,精度为±0.2%。培训的ANN模型仅需要每种数据点26.4 ms,以预测传统数值模拟所需的6.0分钟的TEG性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号