首页> 外文OA文献 >SEGMENTATION OF 3D PHOTOGRAMMETRIC POINT CLOUD FOR 3D BUILDING MODELING
【2h】

SEGMENTATION OF 3D PHOTOGRAMMETRIC POINT CLOUD FOR 3D BUILDING MODELING

机译:3D摄影测量点云的分割3D建筑模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

3D city modeling has become important over the last decades as these models are being used in different studies including, energy evaluation, visibility analysis, 3D cadastre, urban planning, change detection, disaster management, etc. Segmentation and classification of photogrammetric or LiDAR data is important for 3D city models as these are the main data sources, and, these tasks are challenging due to their complexity. This study presents research in progress, which focuses on the segmentation and classification of 3D point clouds and orthoimages to generate 3D urban models. The aim is to classify photogrammetric-based point clouds (> 30 pts/sqm) in combination with aerial RGB orthoimages (~ 10 cm, RGB image) in order to name buildings, ground level objects (GLOs), trees, grass areas, and other regions. If on the one hand the classification of aerial orthoimages is foreseen to be a fast approach to get classes and then transfer them from the image to the point cloud space, on the other hand, segmenting a point cloud is expected to be much more time consuming but to provide significant segments from the analyzed scene. For this reason, the proposed method combines segmentation methods on the two geoinformation in order to achieve better results.
机译:3D城市建模在过去几十年中变得重要,因为这些模型在不同的研究中使用,包括能源评估,可见性分析,3D地籍,城市规划,变革检测,灾害管理等。分割和摄影测量或激光雷达数据的分类对于3D城市模型来说,这是主要数据源的重要性,而且,由于他们的复杂性,这些任务是挑战。本研究提出了正在进行的研究,专注于3D点云和正弦贴图的分割和分类,以产生3D城市模型。目的是将基于摄影测量的点云(> 30 pts / sqm)与空中RGB OrthoImages(〜10cm,RGB图像)组合分类,以命名建筑物,地面对象(Glos),树木,草地区和其他地区。如果一方面,空中Orthoimages的分类是预见的,以便成为获取类的快速方法,然后将它们从图像转移到点云空间,另一方面,预计点云预计将更多耗时但要从分析的场景提供重要的细分。因此,所提出的方法将分段方法组合在两个地理信息上,以实现更好的结果。

著录项

  • 作者

    E. Özdemir; F. Remondino;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号