首页> 外文OA文献 >Bayesian mixed effects models for zero-inflated compositions in microbiome data analysis
【2h】

Bayesian mixed effects models for zero-inflated compositions in microbiome data analysis

机译:贝叶斯混合效果模型用于微生物组数据分析中的零充气组合物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detecting associations between microbial composition and samplecharacteristics is one of the most important tasks in microbiome studies. Mostof the existing methods apply univariate models to single microbial speciesseparately, with adjustments for multiple hypothesis testing. We propose aBayesian nonparametric analysis for a generalized mixed effects linear modeltailored to this application. The marginal prior on each microbial compositionis a Dirichlet Processes, and dependence across compositions is induced througha linear combination of individual covariates, such as disease biomarkers orthe subject's age, and latent factors. The latent factors capture residualvariability and their dimensionality is learned from the data in a fullyBayesian procedure. We propose an efficient algorithm to sample from theposterior and visualizations of model parameters which reveal associationsbetween covariates and microbial composition. The proposed model is validatedin simulation studies and then applied to analyze a microbiome dataset forinfants with Type I diabetes.
机译:检测微生物组合物和样品化杆菌之间的关联是微生物组研究中最重要的任务之一。大多数现有方法将单一的模型应用于单一微生物的单一微生物,调整多假设检测。我们向ABAYESIAN非参数分析提出了用于本申请的广义混合效应线性。每种微生物组合物的边缘前的较小过程,并且跨越组合物的依赖性通过疾病生物标志物或受试者年龄和潜在的年龄和潜在因子进行诱导。潜在因子捕获残留度和其维度从全面的程序中的数据学习。我们提出了一种高效的算法来从模型参数的雌雄同体和可视化的样本,揭示缔合的协增性和微生物组合物。所提出的模型是验证的仿真研究,然后应用于用I型糖尿病分析微生物组数据集Forinfantes。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号