首页> 外文OA文献 >COMPARISON OF COMPUTER-AIDED INTEGRATION TECHNIQUES WHEN OBTAINING INITIAL DISPLACEMENTS MATRIX FOR GEOMETRICALLY NON-LINEAR LAMINATED FINITE ELEMENT /KOMPIUTERINIŲ INTEGRAVIMO TECHNOLOGIJŲ PALYGINIMAS SUDARANT GEOMETRIŠKAI NETIESINIO SLUOKSNIUOTOJO BAIGTINIO ELEMENTO PRADINIŲ POSLINKIŲ MATRICĄ
【2h】

COMPARISON OF COMPUTER-AIDED INTEGRATION TECHNIQUES WHEN OBTAINING INITIAL DISPLACEMENTS MATRIX FOR GEOMETRICALLY NON-LINEAR LAMINATED FINITE ELEMENT /KOMPIUTERINIŲ INTEGRAVIMO TECHNOLOGIJŲ PALYGINIMAS SUDARANT GEOMETRIŠKAI NETIESINIO SLUOKSNIUOTOJO BAIGTINIO ELEMENTO PRADINIŲ POSLINKIŲ MATRICĄ

机译:计算机辅助集成技术的比较获取初始位移矩阵,用于几何非线性层压有限元/计算机集成技术的汇编 t

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Geometrical non-linearity of the laminated element has not been realized so far in the widely known commercial finite element method packages such as ABAQUS, ALGOR, ANSYS, COSMOS although researches in that field are actively carried out. On the other hand, there is a lot of problems where large displacements and deformations must be dealt with to obtain a precise decision.A wide range of composite orthotopic materials is used in constructions and other fields of technology. Various numerical methods were implemented to handle laminated plates and shells, however most of them are intended for application only with particular types of the structures.The author's aim is to develop a geometrically nonlinear finite element that could be effectively used for analysis of various laminated slabs regardless of their shape, thickness of laminae, properties of materials, direction of orthotropy axes, way of loading and boundary conditions.Obtaining and handling the element's initial displacement matrix used in the iteration process is a highly complicated issue requiring significant amount of computer resources to be involved. One of the most important aims of the research is to develop an element which could be used not only in an expensive multiprocessor mainframes, but also in an usual personal computer.For the structure, a sophisticated finite element TRIPLT having 50 degrees of freedom is used. The geometrical matrix for this element is obtained involving L-coordinates' array while displacements and rotations in the middle of the element are expressed through the nodal displacements (rotations), their derivatives, and displacements (rotations) in the central point. Linear and non-linear components for the geometrical matrix are shown in Eqs 2 and 5.The behaviour of a geometrical non-linear finite elements structure is described by Eq 8. The tangent stiffness matrix consists of the conventional linear elastic stiffness matrix, initial stress matrix and initial displacements matrix which is obtained by Eq 10, using both analytical and/or numerical integrating.The analytical integrating involves expanding of the appropriate expressions into basic matrices (Eqs 11, 12) and using formula 15. The initial displacement matrix in term of constitutive matrix's elements and the basic matrices is shown in Eqs 13 and 14.Numerical integrating is conducted by two methods: those using Hammer and Gauss-Radau weight coefficients. Numerical approach is applied both to the basic matrices and factorised expressions of submatrices involving intermediate arrays and matrices (Eqs 23, 24).Two ways of obtaining the intermediate arrays and matrices are discussed.Because of high complexity of the procedures involved the computer algebra system Mathematica was used for the integrating and recording FORTRAN codes.Comparison of the effectiveness of all the procedures is presented in a table.The investigation results show that the initial displacement matrix obtained by means of numerical integration involves a small amount of arithmetic operations to be handled with a usual personal computer.First Published Online: 30 Jul 2012
机译:到目前为止,迄今为止,诸如Abaqus,Algor,Ansys,Cosmos的众所周知的商业有限元方法包,虽然主动执行该领域的研究,但尚未实现层压元件的几何非线性。另一方面,必须有很多问题,其中必须处理大的位移和变形以获得精确的决定。各种复合原位材料用于结构和其他技术领域。实施了各种数值方法以处理层压板和壳体,然而它们中的大部分仅用于仅用特定类型的结构应用。作者的目的是开发一种几何非线性有限元,可以有效地用于分析各种层压板,无论其形状,薄层,材料的性质,正交轴的性能,装载方式和边界条件。获取和处理迭代过程中使用的元素的初始位移矩阵是一种高度复杂的问题,需要涉及大量计算机资源。该研究的最重要目标之一是开发一个元素,该元素不仅可以在昂贵的多处理器主机中使用,而且在通常的个人计算机中也可以使用。对于该结构,使用具有50度自由度的复杂有限元Triplet。此元素的几何矩阵获得涉及L-坐标阵列而位移和旋转在中间的元件都是通过在中央点处的节点位移(旋转),它们的衍生物,和位移(旋转)来表示。用于几何矩阵的线性和非线性组件在EQS 2和5中示出。通过EQ 8描述了几何非线性有限元结构结构的行为。使用分析和/或通过EQ 10获得的传统线性弹性刚度矩阵,初始应力矩阵和初始位移矩阵。数值积分。分析积分涉及将适当的表达式扩展到基本矩阵(EQS 11,12)和使用公式15.在方位矩阵元件和基本矩阵期间的初始位移矩阵示于EQS 13和14中。用两种方法进行数值积分:使用锤子和高斯 - 拉伸重量系数的方法。应用数值方法以涉及中间阵列和矩阵(EQS 23,24)的基本矩阵和构建表达式。讨论了获得中间阵列和矩阵的两种方式。由于涉及的程序的高复杂性,计算机代数系统数学用于集成和记录FORTRAN代码。表格中介绍了所有程序的有效性的比较。调查结果表明,通过数值集成获得的初始位移矩阵涉及用通常的个人计算机处理少量的算术运算。2012年7月30日首次出版

著录项

  • 作者

    Valentinas Kulinič;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号