首页> 外文OA文献 >SSAW: A new sequence similarity analysis method based on the stationary discrete wavelet transform
【2h】

SSAW: A new sequence similarity analysis method based on the stationary discrete wavelet transform

机译:SSAW:基于静止离散小波变换的新序列相似性分析方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Alignment-free sequence similarity analysis methods often lead to significant savings in computational time over alignment-based counterparts. Results A new alignment-free sequence similarity analysis method, called SSAW is proposed. SSAW stands for Sequence Similarity Analysis using the Stationary Discrete Wavelet Transform (SDWT). It extracts k-mers from a sequence, then maps each k-mer to a complex number field. Then, the series of complex numbers formed are transformed into feature vectors using the stationary discrete wavelet transform. After these steps, the original sequence is turned into a feature vector with numeric values, which can then be used for clustering and/or classification. Conclusions Using two different types of applications, namely, clustering and classification, we compared SSAW against the the-state-of-the-art alignment free sequence analysis methods. SSAW demonstrates competitive or superior performance in terms of standard indicators, such as accuracy, F-score, precision, and recall. The running time was significantly better in most cases. These make SSAW a suitable method for sequence analysis, especially, given the rapidly increasing volumes of sequence data required by most modern applications.
机译:摘要背景对齐序列相似性分析方法通常会在基于对准的对应上的计算时间内显着节省。结果提出了一种新的对齐序列相似性分析方法,称为SSAW。 SSAW使用静止离散小波变换(SDWT)代表序列相似性分析。它从序列中提取K-MERS,然后将每个k-mer映射到复数字段。然后,使用静止离散小波变换将形成的复杂数字变换成特征向量。在这些步骤之后,将原始序列变成具有数值的特征向量,然后可以用于聚类和/或分类。结论使用两种不同类型的应用,即聚类和分类,我们将SSAW与最新的对准自由序列分析方法进行比较。 SSAW在标准指标方面表现出具有竞争力或卓越的性能,例如准确性,F分,精度和召回。在大多数情况下,运行时间明显更好。这些使SSAW成为序列分析的合适方法,特别是,给定大多数现代应用所需的序列数据量快速增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号