首页> 外文OA文献 >Noise-induced tipping under periodic forcing: Preferred tipping phase in a non-adiabatic forcing regime
【2h】

Noise-induced tipping under periodic forcing: Preferred tipping phase in a non-adiabatic forcing regime

机译:周期性强制下的噪声引起的倾翻:在非绝热迫使制度中优选的倾翻阶段

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a simple periodically-forced 1-D Langevin equation whichpossesses two stable periodic orbits in the absence of noise. We ask thequestion: is there a most likely transition path between the stable orbits thatwould allow us to identify a preferred phase of the periodic forcing for whichtipping occurs? The regime where the forcing period is long compared to theadiabatic relaxation time has been well studied. Our work complements this byfocusing on the regime where the forcing period is comparable to the relaxationtime. We compute optimal paths using the least action method which involves theOnsager-Machlup functional and validate results with Monte Carlo simulations ina regime where noise and drift are balanced. Results for the preferred tippingphase are compared with the deterministic aspects of the problem. We identifyparameter regimes where nullclines, associated with the deterministic problemin a 2-D extended phase space, form passageways through which the optimal pathstransit. As the nullclines are independent of the relaxation time and the noisestrength, this leads to a robust deterministic predictor of a preferred tippingphase for the noise and drift balanced regime.
机译:我们考虑一个简单的定期强制1-D Langevin等式,在没有噪声的情况下,两个稳定的周期性轨道。我们问以下内容:稳定的轨道之间是否有一个最有可能的过渡路径,允许我们识别出现定期强制的优选阶段?研究了强迫期与泰姬的抛出时间相比的制度已经很好地研究。我们的工作在迫使期与放松时间相当的政权上补充了这一点。我们使用最不动作方法计算最佳路径,该方法涉及Aso​​nsager-Machlup功能并验证Monte Carlo Simulations Ina制度,其中噪声和漂移平衡。与问题的确定性方面进行比较了优选的分列的结果。我们识别与确定性问题相关联的无烟素的识别因素的方案,形成了最佳路径的形成通道。随着测量噪声的无关,这导致了噪声和漂移平衡状态的优选提示的稳健确定性预测因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号