首页> 外文OA文献 >Application of Radial Basis Function Neural Network Coupling Particle Swarm Optimization Algorithm to Classification of Saudi Arabia Stock Returns
【2h】

Application of Radial Basis Function Neural Network Coupling Particle Swarm Optimization Algorithm to Classification of Saudi Arabia Stock Returns

机译:径向基函数神经网络耦合粒子综合优化算法在沙特阿拉伯股票回报分类中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artificial intelligence (AI) based business process optimization has a significant impact on a country’s economic development. We argue that the use of artificial neural networks in business processes will help optimize these processes ensuring the necessary level in the functioning and compliance with the foundations of sustainable development. In this paper, we proposed a mathematical model using AI to detect outliers in the daily return of Saudi stock market (Tadawul). An outlier is defined as a data point that deviates too much from the rest of the observations in a data sample. Based on the Engle and Granger Causality test, we selected inflation rate, repo rate, and oil prices as input variables. In order to build the mathematical model, we first used the Tukey method to detect outliers in the stock return data from Tadawul that are collected during the period from October 2011 to December 2019. In this way, we categorized the stock return data into two classes, namely, outliers and nonoutliers. These data are further used to train artificial neural network in conjunction with particle swarm optimization algorithm. In order to assess the performance of the proposed model, we employed the mean squared error function. Our proposed model is signified by the mean squared error value of 0.05. The proposed model is capable of detecting outlier values directly from the inflation rate, repo rate, and oil prices. The proposed model can be helpful in developing and applying intelligent optimization techniques to solve problems in business processes.
机译:基于人工智能(AI)的业务流程优化对一个国家的经济发展产生了重大影响。我们认为,在业务流程中使用人工神经网络将有助于优化这些过程,以确保功能和遵守可持续发展的基础。在本文中,我们提出了一种使用AI的数学模型来检测日常股票市场(塔德瓦尔)的日常返回中的异常值。异常值定义为数据点,该数据点从数据示例中的其余观察结果偏差。基于Engle和Granger因果关系测试,我们选择了充气率,仓库和油价作为输入变量。为了建立数学模型,我们首先使用Tukey方法来检测来自2011年10月至2019年10月期间收集的蝌蚪收集的股票回报数据中的异常值。通过这种方式,我们将股票退货数据分类为两类,即异常值和非改装。这些数据还用于培训与粒子群优化算法结合的人工神经网络。为了评估所提出的模型的性能,我们采用了平均平方误差函数。我们所提出的模型由平均平方误差值表示为0.05。该拟议的模型能够直接从通货膨胀率,回购率和油价检测异常值。拟议的模型可以有助于开发和应用智能优化技术,以解决业务流程中的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号