首页> 外文OA文献 >Performance Enhancement of Roof-Mounted Photovoltaic System: Artificial Neural Network Optimization of Ground Coverage Ratio
【2h】

Performance Enhancement of Roof-Mounted Photovoltaic System: Artificial Neural Network Optimization of Ground Coverage Ratio

机译:屋顶上的光伏系统性能提升:地面覆盖率的人工神经网络优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Buildings in hot climate areas are responsible for high energy consumption due to high cooling load requirements which lead to high greenhouse gas emissions. In order to curtail the stress on the national grid and reduce the atmospheric emissions, it is of prime importance that buildings produce their own onsite electrical energy using renewable energy resources. Photovoltaic (PV) technology is the most favorable option to produce onsite electricity in buildings. Installation of PV modules on the roof of the buildings in hot climate areas has a twofold advantage of acting as a shading device for the roof to reduce the cooling energy requirement of the building while producing electricity. A high ground coverage ratio provides more shading, but it decreases the efficiency of the PV system because of self-shading of the PV modules. The aim of this paper was to determine the optimal value of the ground coverage ratio which gives maximum overall performance of the roof-mounted PV system by considering roof surface shading and self-shading of the parallel PV modules. An unsupervised artificial neural network approach was implemented for Net levelized cost of energy (Net-LCOE) optimization. The gradient decent learning rule was used to optimize the network connection weights and the optimal ground coverage ratio was obtained. The proposed optimized roof-mounted PV system was shown to have many distinct performance advantages over a typical ground-mounted PV configuration such as 2.9% better capacity factor, 15.9% more energy yield, 40% high performance ratio, 14.4% less LCOE, and 18.6% shorter payback period. The research work validates that a roof-mounted PV system in a hot climate area is a very useful option to meet the energy demand of buildings.
机译:在炎热气候地区建筑物负责高能耗由于高制冷负荷的要求,其导致高的温室气体排放。为了削减对国家电网的压力,减少大气排放,这是最重要的是建筑使用可再生能源资源生产自己的现场电能。光伏(PV)技术是在建筑物产生电力现场最有利的选择。光伏组件上的建筑物在气候炎热地区屋顶安装具有充当遮阳设备的屋顶,以减少建筑物的冷却能量需要,同时产生电的双重优势。高地面覆盖率提供了更多的着色,但它降低由于PV模块的自遮蔽PV系统的效率。本文的目的是要确定在地面覆盖比的最佳值,其给出了最大的整体性能的炉顶安装的PV系统通过考虑屋顶表面着色和并联PV模块的自遮蔽。无人监督的人工神经网络方法是优化能源净平准化成本(净-LCOE)实现的。梯度体面学习规则来优化网络连接权重和得到最佳的地面覆盖比。所提出的优化的屋顶安装的光伏系统显示出在典型的地面安装的PV配置更好,比如2.9%的容量因子具有许多独特的性能优势,更15.9%的能量产率,40%的高性能比,14.4%以下LCOE,和较短的18.6%投资回收期。该研究工作验证了屋顶安装的光伏系统在炎热的气候区域,以满足建筑物的能源需求非常有用的选项。

著录项

  • 作者

    Ali S. Alghamdi;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号