首页> 外文OA文献 >Homogenisation with error estimates of attractors for damped semi-linear anisotropic wave equations
【2h】

Homogenisation with error estimates of attractors for damped semi-linear anisotropic wave equations

机译:对衰减半线性各向异性波动波动方程的误差估计的均质化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Homogenisation of global ?ε and exponential ?ε attractors for the damped semi-linear anisotropic wave equation ∂t2uε+y∂tuε−divaxε∇uε+f(uε)=g,$egin{array}{}displaystylepartial_t ^2u^arepsilon + y partial_t u^arepsilon-operatorname{div} left(aleft( frac{x}{arepsilon} ight)abla u^arepsilon ight)+f(u^arepsilon)=g,end{array}$ on a bounded domain Ω ⊂ ℝ3, is performed. Order-sharp estimates between trajectories uε(t) and their homogenised trajectories u0(t) are established. These estimates are given in terms of the operator-norm difference between resolvents of the elliptic operator divaxε∇$egin{array}{}displaystyleoperatorname{div}left(aleft( frac{x}{arepsilon} ight)abla ight)end{array}$ and its homogenised limit div (ah∇). Consequently, norm-resolvent estimates on the Hausdorff distance between the anisotropic attractors and their homogenised counter-parts ?0 and ?0 are established. These results imply error estimates of the form distX(?ε, ?0) ≤ Cεϰ and distXs⁡(Mε,M0)≤Cεϰ$egin{array}{}displaystyleoperatorname{dist}^s_X(mathcal M^arepsilon, mathcal M^0) le C arepsilon^arkappaend{array}$ in the spaces X = L2(Ω) × H–1(Ω) and X = (Cβ(Ω))2. In the natural energy space ? := H01$egin{array}{}displaystyleH^1_0end{array}$(Ω) × L2(Ω), error estimates dist?(?ε, Tε ?0) ≤ Cεϰ$egin{array}{}displaystyleC sqrt{arepsilon}^arkappaend{array}$ and distEs⁡(Mε,TεM0)≤Cεϰ$egin{array}{}displaystyleoperatorname{dist}^s_mathcal{E}(mathcal M^arepsilon, ext{T}_arepsilon mathcal M^0) le C sqrt{arepsilon}^arkappaend{array}$ are established where Tε is first-order correction for the homogenised attractors suggested by asymptotic expansions. Our results are applied to Dirchlet, Neumann and periodic boundary conditions.
机译:全球?ε和指数吗?阻尼半线性各向异性波动方程ε吸引∂t2uε+y∂tuε-divaxε∇uε+ F的均化(uε)=克,$ BEGIN {阵列} {} 的DisplayStyle partial_t ^ 2U ^ varepsilon + Y partial_tÚ^ varepsilon- operatorname {DIV} 左(一个左( tfrac {X} { varepsilon} 右) nablaÚ^ varepsilon 右)+ F(U ^ varepsilon)=克, {端阵列} $上的有界域Ω⊂ℝ3,被执行。轨迹uε(t)和它们的均质化轨迹U0(t)的订单急剧估计建立。这些估计在椭圆算divaxε∇$的预解之间的操作范数差方面给予 {开始阵列} {} 的DisplayStyle operatorname {DIV} 左(A 左( tfrac {X} { varepsilon } 右) nabla 右) {端阵列} $及其均质化极限的div(ah∇)。因此,在各向异性吸引他们均质反零件?0?0之间的豪斯多夫距离限额,解决方法估计建立。这些结果意味着形式distX的误差估计(?ε,ε0)≤Cεκ和distXs⁡(Mε,M0)≤Cεκ$ BEGIN {阵列} {} 的DisplayStyle operatorname {DIST} ^ s_X( mathcal M 1 varepsilon, mathcal M 1 0)文件ç varepsilon ^ varkappa 端{阵列} $在空间X = L2(Ω)×H-1(Ω)和X =(Cβ(Ω))2。在自然能源领域? := H01 $ 开始{阵列} {} displaystyleH ^ 1_0 端{阵列} $(Ω)×L2(Ω),误差估计DIST(ε,Tε0?)≤Cεκ$ 开始{阵列}? {} displaystyleC SQRT { varepsilon} ^ varkappa {端阵列} $和distEs⁡(Mε,TεM0)≤Cεκ$ BEGIN {阵列} {} 的DisplayStyle operatorname {DIST} ^ S_ mathcal {Ë }( mathcal M 1 varepsilon,文本【T} _ varepsilon mathcal M 1 0)文件ç SQRT { varepsilon} ^ varkappa 端{阵列}建立$其中Tε是第一阶校正通过渐进展开建议的均质吸引。我们的研究结果应用到一边值,纽曼和周期性边界条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号