首页> 外文OA文献 >Copula Structure Analysis Based on Robust and Extreme Dependence Measures
【2h】

Copula Structure Analysis Based on Robust and Extreme Dependence Measures

机译:基于鲁棒和极端依赖度量的Copula结构分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we extend the standard approach of correlation structure analysis in order to reduce the dimension of highdimensional statistical data. The classical assumption of a linear model for the distribution of a random vector is replaced by the weaker assumption of a model for the copula. For elliptical copulae a correlation-like structure remains but different margins and non-existence of moments are possible. Moreover, elliptical copulae allow also for a copula structure analysis of dependence in extremes. After introducing the new concepts and deriving some theoretical results we observe in a simulation study the performance of the estimators: the theoretical asymptotic behavior of the statistics can be observed even for a sample of only 100 observations. Finally, we test our method on real financial data and explain differences between our copula based approach and the classical approach. Our new method yields a considerable dimension reduction also in non-linear models.
机译:在本文中,我们扩展了相关结构分析的标准方法,以减小高维统计数据的维数。随机向量分布的线性模型的经典假设被copula模型的较弱假设取代。对于椭圆形系,仍保留类似相关的结构,但可能有不同的余量和不存在的力矩。此外,椭圆形系孔还允许在极端情况下对系孔结构进行依赖性分析。引入新概念并得出一些理论结果后,我们在仿真研究中观察了估计量的性能:即使仅对100个观察值进行抽样,也可以观察到统计量的理论渐近行为。最后,我们在真实财务数据上测试我们的方法,并说明基于copula的方法与经典方法之间的差异。在非线性模型中,我们的新方法也可以显着减小尺寸。

著录项

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号