首页> 外文OA文献 >Using learned under-sampling pattern for increasing speed of cardiac cine MRI based on compressive sensing principles
【2h】

Using learned under-sampling pattern for increasing speed of cardiac cine MRI based on compressive sensing principles

机译:使用学习的欠采样模式,基于压缩感知原理提高心脏电影mRI的速度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

AbstractThis article presents a compressive sensing approach for reducing data acquisition time in cardiac cine magnetic resonance imaging (MRI). In cardiac cine MRI, several images are acquired throughout the cardiac cycle, each of which is reconstructed from the raw data acquired in the Fourier transform domain, traditionally called k-space. In the proposed approach, a majority, e.g., 62.5%, of the k-space lines (trajectories) are acquired at the odd time points and a minority, e.g., 37.5%, of the k-space lines are acquired at the even time points of the cardiac cycle. Optimal data acquisition at the even time points is learned from the data acquired at the odd time points. To this end, statistical features of the k-space data at the odd time points are clustered by fuzzy c-means and the results are considered as the states of Markov chains. The resulting data is used to train hidden Markov models and find their transition matrices. Then, the trajectories corresponding to transition matrices far from an identity matrix are selected for data acquisition. At the end, an iterative thresholding algorithm is used to reconstruct the images from the under-sampled k-space datasets. The proposed approaches for selecting the k-space trajectories and reconstructing the images generate more accurate images compared to alternative methods. The proposed under-sampling approach achieves an acceleration factor of 2 for cardiac cine MRI.
机译:摘要本文提出了一种压缩感测方法,可减少心脏电影磁共振成像(MRI)中的数据获取时间。在心脏MRI中,在整个心动周期中都采集了几张图像,每张图像都是从在傅立叶变换域(传统上称为k空间)中采集的原始数据重建而来的。在所提出的方法中,在奇数时间点获取了大部分(例如62.5%)的k空间线(轨迹),而在偶数时间获取了少数(例如37.5%)的k空间线心动周期的要点。从偶数时间点获取的数据中学习偶数时间点的最佳数据获取。为此,将奇数时间点的k空间数据的统计特征通过模糊c均值进行聚类,并将结果视为马尔可夫链的状态。所得数据用于训练隐马尔可夫模型并找到其过渡矩阵。然后,选择与远离单位矩阵的过渡矩阵相对应的轨迹以进行数据获取。最后,使用迭代阈值算法从欠采样的k空间数据集中重建图像。与替代方法相比,所提出的用于选择k空间轨迹和重建图像的方法可生成更准确的图像。对于心脏电影MRI,建议的欠采样方法可实现2的加速因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号