首页> 外文OA文献 >Weighting Large Datasets with Complex Sampling Designs: Choosing the Appropriate Variance Estimation Method
【2h】

Weighting Large Datasets with Complex Sampling Designs: Choosing the Appropriate Variance Estimation Method

机译:使用复杂采样设计加权大数据集:选择合适的方差估计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using the Canadian Workplace and Employee Survey (WES), three variance estimation methods for weighting large datasets with complex sampling designs are compared: simple final weighting, standard bootstrapping and mean bootstrapping. Using a logit analysis, it is shown - depending on which weighting method is used - different predictor variables are significant. The potential lack of independence inherent in a multi-stage cluster sample design, as in the WES, results in a downward bias in the variance when conducting statistical inference (using the simple final weight), which in turn results in increased Type I errors. Bootstrap methods can account for the survey’s design and adjust the variance so that it is inference appropriate and corrected for downward bias. The WES provides mean, as opposed to standard, bootstrap weights with the data; thus, a further adjustment to account for the reduced variation inherent when information is grouped is required. Failure to use mean bootstrap weights appropriately leads to biased standard errors and inappropriate inference.
机译:使用加拿大工作场所和员工调查(WES),对三种具有复杂抽样设计的大型数据集加权的方差估计方法进行了比较:简单最终加权,标准自举和均值自举。使用logit分析,根据所使用的加权方法,可以看出不同的预测变量很重要。像WES一样,多阶段聚类样本设计中固有的潜在缺乏独立性会导致在进行统计推断时(使用简单的最终权重)方差下降,从而导致I型错误增加。引导方法可以说明调查的设计并调整方差,以便可以进行推断并针对向下偏差进行校正。与标准相比,WES提供了平均值和数据自举权重;因此,需要进一步的调整以解决信息分组时固有的减少的变化。未能正确使用平均自举权重会导致有偏差的标准误差和不适当的推断。

著录项

  • 作者

    Mann Sara; Chowhan James;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号