首页> 外文OA文献 >Nanostrucured Lithium Iron Phosphate As Cathode Material For Lithium Ion-Batteries
【2h】

Nanostrucured Lithium Iron Phosphate As Cathode Material For Lithium Ion-Batteries

机译:纳米结构磷酸铁锂作为锂离子电池正极材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lithium-ion batteries are the power source of choice for portable electronics, power tools and electric-based transportation. This outstanding commercial success has spawned great international interest in applying this technology to systems that demand higher power, such as the electric component of hybrid, extended range, and electric vehicles. This would require new electrode materials that are less expensive, more energetic, and more environmentally friendly than the present ones. Of particular interest is the olivine-structured LiFePO4 cathode developed by Goodenough and co-workers, which offers several appealing features, such as a high, flat voltage profile and relatively high theoretical specific capacity (170 mAhg−1), combined with low cost and low toxicity. However, the intrinsically poor electronic and ionic conductivities of LiFePO4 limit the delivery of high specific capacity at high discharge rates. Several strategies have been devised to overcome the inherent limitations of LiFePO4.Carbon coating is one of the remedies to improve the performance of LiFePO4. We studied the effect of carbon coating on the performance of LiFePO4. First, we synthesized carbon-coated LiFePO4 samples with different amount of surfactant, lauric acid that acts as carbon source. We were able to show that an optimized amount of carbon results in greatly improved room-temperature electrochemical performance. On the other hand, because the electrochemical properties are strongly dependent on the quality of deposited carbon, we did also study the effect of carbon sources: lauric acid, myristic acid and oleic acid. We successfully showed that the proper carbon sources and carbon content played a key role on improving the initial charge-discharge capacity of the LiFePO4/C cathode. In addition, we did also shed the light of the positive impact of excess of Li on the electrochemical performance of C-LiFePO4.Knowing that Fe-site doping is considered to be an effective way to improve the rate performance of LiFePO4, we were able to show that composing LiFePO4 with both carbon-networks and tuning electronic conductivity by metal doping (1mol % In3+) is effective in achieving better electrochemical properties, especially at high rates of charge-discharge. We were also interesting to examine the effect of the partial substitution of Fe2+ with Mn2+. We synthesized LiMn0.2Fe0.8PO4 material and perform in-depth characterizations to gain knowledge on physical and electrochemical properties of this class of battery materials. That project looks promising since that new materials will operate at higher potential (3.4V, 4.1V) than LiFePO4.
机译:锂离子电池是便携式电子产品,电动工具和电动运输的首选电源。这项出色的商业成功已经引起了国际上的极大兴趣,希望将该技术应用于要求更高功率的系统,例如混合动力,增程和电动汽车的电气组件。这将需要新的电极材料,其比目前的电极材料更便宜,更有活力并且更环保。特别有趣的是Goodenough及其同事开发的橄榄石结构的LiFePO4阴极,它具有多种吸引人的功能,例如高,平坦的电压曲线和相对较高的理论比容量(170 mAhg-1),以及低成本和低成本。低毒。但是,LiFePO4固有的较差的电子和离子电导率限制了在高放电速率下高比容量的输送。已经设计出几种策略来克服LiFePO4的固有局限性。碳涂层是改善LiFePO4性能的补救措施之一。我们研究了碳涂层对LiFePO4性能的影响。首先,我们合成了碳包覆的LiFePO4样品,其中包含不同量的表面活性剂,月桂酸作为碳源。我们能够证明,优化的碳含量可以大大改善室温下的电化学性能。另一方面,由于电化学性质在很大程度上取决于沉积碳的质量,因此我们也研究了碳源的作用:月桂酸,肉豆蔻酸和油酸。我们成功地表明,适当的碳源和碳含量在改善LiFePO4 / C阴极的初始充放电容量中起着关键作用。此外,我们也确实发现了过量的Li对C-LiFePO4电化学性能的积极影响。知道Fe现场掺杂被认为是改善LiFePO4倍率性能的有效方法,我们能够结果表明,同时具有碳网络和通过金属掺杂(1mol%In3 +)调节电子传导性的LiFePO4可以有效地实现更好的电化学性能,尤其是在高充放电速率下。我们也很有趣地研究了Fe2 +被Mn2 +部分取代的影响。我们合成了LiMn0.2Fe0.8PO4材料,并进行了深入的表征,以了解此类电池材料的物理和电化学性质。该项目看起来很有希望,因为新材料将以比LiFePO4更高的电势(3.4V,4.1V)运行。

著录项

  • 作者

    Bazzi Khadije;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号