首页> 外文OA文献 >Theoretical And Experimental Studies Of Noncovalent Metal Cation Binding And Base Pairing Interactions Of Cytosine And Modified Cytosines
【2h】

Theoretical And Experimental Studies Of Noncovalent Metal Cation Binding And Base Pairing Interactions Of Cytosine And Modified Cytosines

机译:非共价金属阳离子结合和胞嘧啶与修饰胞嘧啶碱基配对相互作用的理论和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ABSTRACTTHEORETICAL AND EXPERIMENTAL STUDIES OF NONCOVALENT METAL CATION BINDING AND BASE PARING INTERACTIONS OF CYTOSINE AND MODIFIED CYTOSINESbyBO YANGDecember 2014Advisor: Professor Mary T. RodgersMajor: Analytical ChemistryDegree: Doctor of PhilosophyBinding of metal cations to the nucleobases can lead to formation of rare tautomers of the nucleobases. The infrared multiple photon dissociation (IRMPD) action spectroscopy of five alkali metal cation-cytosine complexes, M+(cytosine), where M+ = Li+, Na+, K+, Rb+, and Cs+, are examined using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) coupled to a free electron laser. This work suggests that only the ground-state tautomeric conformations are accessed for all five M+(cytosine) complexes when electrospray ionization (ESI) is used as the ionization technique.Based on the structural information obtained from the IRMPD studies, the binding affinities of four alkali metal cations to cytosine are measured using the threshold collision-induced dissociation (TCID) techniques in a guided ion beam tandem mass spectrometer to understand the effects of the size of the alkali metal cation on the strength of binding. The bond dissociation energies (BDEs) of the M+(cytosine) complexes are found to decrease as the size of the alkali metal cation increases from Na+(0.98 Å) to Cs+(1.67 Å) as a result of the electrostatic nature of the binding.The base-pairing interactions of the proton-bound dimers of cytosine are likely the major factor that helps stabilize noncanonical DNA i-motif conformations, which are associated with Fragile X syndrome, the most widespread inherited cause of mental retardation in humans. Modifications of cytosine, such as methylation and halogenation, can influence the binding modes or the strength of the base-pairing interactions. The IRMPD action spectroscopy of four proton-bound homodimers, (5xC)H+(5xC), where x = H, F, Br, and Me, and three proton-bound heterodimers, (C)H+(5xC), where x = F, Br, and Me, are examined using a FT-ICR MS coupled to an optical parametric oscillator (OPO) laser. In the case of the proton-bound homodimers, it is clear that the only tautomeric conformation accessed in the experiments is the ground-state II+∙∙∙i_3a conformation. In the case of the heterodimers, the ground-state structures, II+∙∙∙i_3a, are accessed in the experiments. The first-excited conformers of the proton-bound heterodimers, i∙∙∙II+_3a, where the excess proton is now bound to the base with the lower PA, and which lie 2.4-7.4 kJ/mol higher in free energy, may also be accessed in the experiments, but are likely only present in low abundance.Quantitative determination of the base-pairing energies (BPEs) of 20 proton-bound homo- and heterodimers is then performed using a guided ion beam tandem mass spectrometer to illustrate the effects of modifications on the strength of the base-pairing interactions in the proton-bound dimers. The modified cytosines included in this work are 5-methylcytosine (5MeC), 5-fluorocytosine (5FC), 5-bromocytosine (5BrC), 5-iodocytosine (5IC), 1-methylcytosine (1MeC), 5-fluoro-1-methylcytosine (1Me5FC), 5-bromo-1-methylcytosine (1Me5BrC), and 1,5-dimethylcytosine (15dMeC). Relative N3 proton affinities (PAs) of the modified cytosines are also extracted from the experimental data from competitive analyses of the two primary dissociation pathways that occur in parallel for the proton-bound heterodimers of cytosine and modified cytosines. Methylation clearly influences the BPE of the proton-bound dimers and N3 PA of cytosine. In the case of the homodimers, 5-hypermethylation is found to increase the BPE, whereas 1-hypermethylation is found to exert almost no effect on the BPE. Hence, 1,5-dimethylation of both cytosines results in an intermediate increase in the BPE. In the case of the heterodimers, methylation of a single cytosine at the N1, C5 or N1 and C5 positions weakens the BPE, and therefore would tend to destabilize DNA i-motif conformations. In contrast to its effects on the BPEs, methylation of cytosine increases the N3 PA regardless of the position of substitution. The N3 PAs of cytosine and the methylated cytosines follow the order: 15dMeC (979.9 ± 2.9 kJ/mol) u3e 1MeC (964.7 ± 2.9 kJ/mol) u3e 5MeC (963.2 ± 2.9 kJ/mol) u3e C (949.9 ± 2.8 kJ/mol), indicating that N1-methylation has a greater influence on the N3 PA than C5-methylation, and the effects of N1, C5-dimethylation on the N3 PA are roughly additive.Halogen substituents exhibit different behavior from methylation due to their electron-withdrawing properties. 5-Halogenation is found to decrease the BPE, but exert almost no effect on the BPE in the presence of 1-methylation. Halogenation is found to decrease the N3 PA. The N3 PAs of cytosine and the halogenated cytosines follow the order: 1Me5BrC (959.9 ± 3.3 kJ/mol) u3e 1Me5FC (955.7 ± 3.3 kJ/mol) u3e C (949.9 ± 2.8 kJ/mol) u3e 5BrC (930.9 ± 3.6 kJ/mol) u3e 5FC (926.3 ± 3.5 kJ/mol), indicating that 1-methylation has a greater influence on the N3 PA than C5-halogenation.This work is then extended to study the proton-bound dimers of 2′-deoxycytosine (dCyd) and 5-methyl-2′-deoxycytosine (5MedCyd). It is found that 5-permethylation of cytosine residues increases the base-pairing interactions in the presence of 2u27-deoxyribose sugar, and thus should stabilize DNA i-motif conformations. Experimentally, the BPE of the (5MedCyd)H+(dCyd) proton-bound dimer is greater than that of the (dCyd)H+(dCyd) homodimer, whereas theory suggests that 5-methylation of a single cytosine residue exert almost no effect or slightly decrease in the BPE. Thus, single 5-methylation of cytosine residue should lead to minor destabilization of DNA i-motif. The N3 PAs of 5MedCyd is 994.4 ± 8.4 kJ/mol, and is 6.1 kJ/mol greater than that of dCyd, 988.3 ± 8.0 kJ/mol, suggesting that methylation increases the N3 PA of the nucleoside.However, the BPEs of all proton-bound dimers examined here are still much greater than those of canonical Watson-Crick G±C and neutral C*C base pairs, suggesting that DNA i-motif conformations are still favored over conventional base pairing such that the DNA i-motif conformations should be stable upon modifications. In all cases, excellent agreement between TCID measured BPEs and N3 PAs and B3LYP calculated values is found, suggesting that B3LYP calculations can be employed to provide reliable energetic predictions for related systems.
机译:胞嘧啶和修饰胞嘧啶的非价金属阳离子结合和碱基相互作用的抽象理论和实验研究杨波(BO YANG)2014年12月顾问:玛丽·T·罗杰斯教授主要:分析化学学位:博士将金属阳离子的碱基与金属碱基的形成结合在一起。使用傅立叶变换离子回旋共振质谱仪(M + = Li +,Na +,K +,Rb +和Cs +)检测了五个碱金属阳离子-胞嘧啶络合物M +(胞嘧啶)的红外多光子离解(IRMPD)作用光谱( FT-ICR MS)耦合到自由电子激光器。这项工作表明,当使用电喷雾电离(ESI)作为电离技术时,所有五个M +(胞嘧啶)配合物仅可进入基态互变异构构象。基于IRMPD研究获得的结构信息,四个分子的结合亲和力使用引导离子束串联质谱仪中的阈值碰撞诱导解离(TCID)技术测量碱金属阳离子转化为胞嘧啶的过程,以了解碱金属阳离子的大小对结合强度的影响。由于结合的静电性质,发现随着碱金属阳离子的大小从Na +(0.98Å)增加到Cs +(1.67Å),M +(胞嘧啶)配合物的键解离能(BDE)降低。胞嘧啶的质子结合二聚体的碱基配对相互作用可能是有助于稳定非规范性DNA i-基序构象的主要因素,该构象与脆性X综合征相关,后者是人类智力发育最广泛的遗传原因。胞嘧啶的修饰(例如甲基化和卤化)会影响结合模式或碱基配对相互作用的强度。四个质子结合的同二聚体(5xC)H +(5xC)(其中x = H,F,Br和Me)和三个质子结合的异二聚体(C)H +(5xC)的IRMPD作用谱,Br和Me使用耦合到光学参量振荡器(OPO)激光器的FT-ICR MS进行检查。对于质子结合的同型二聚体,很明显,实验中获得的唯一互变异构构象是基态II +∙∙∙i_3a构象。对于异二聚体,在实验中可以访问基态结构II +∙∙∙i_3a。质子结合异二聚体的第一激发构象异构体i∙∙∙II + _3a,其中过量的质子现在以较低的PA结合到碱基上,并且自由能高2.4-7.4 kJ / mol。在实验中也可以访问,但可能仅以低丰度存在。然后使用导向离子束串联质谱仪对20个质子结合的均二聚和异二聚体的碱基配对能量(BPE)进行定量测定。修饰对质子结合的二聚体中碱基配对相互作用强度的影响。这项工作中包含的修饰的胞嘧啶是5-甲基胞嘧啶(5MeC),5-氟胞嘧啶(5FC),5-溴胞嘧啶(5BrC),5-碘胞嘧啶(5IC),1-甲基胞嘧啶(1MeC),5-氟-1-甲基胞嘧啶(1Me5FC),5-溴-1-甲基胞嘧啶(1Me5BrC)和1,5-二甲基胞嘧啶(15dMeC)。修饰胞嘧啶的相对N3质子亲和力(PAs)也从两个主要解离途径的竞争分析的实验数据中提取,这两个平行解离是针对胞嘧啶和修饰胞嘧啶的质子结合异二聚体。甲基化明显影响质子结合的二聚体的BPE和胞嘧啶的N3 PA。在同型二聚体的情况下,发现5-高甲基化增加了BPE,而发现1-高甲基化几乎对BPE没有影响。因此,两个胞嘧啶的1,5-二甲基化导致BPE的中间增加。在异二聚体的情况下,单个胞嘧啶在N1,C5或N1和C5位置的甲基化会弱化BPE,因此会导致DNA i-基序构象不稳定。与它对BPE的作用相反,胞嘧啶的甲基化会增加N3 PA的含量,而与取代位置无关。胞嘧啶和甲基化胞嘧啶的N3 PA顺序为:15dMeC(979.9±2.9 kJ / mol) u3e 1MeC(964.7±2.9 kJ / mol) u3e 5MeC(963.2±2.9 kJ / mol) u3e C(949.9± 2.8 kJ / mol),表明N1-甲基化对N3 PA的影响大于C5-甲基化,并且N1,C5-二甲基化对N3 PA的影响大致是累加的。它们的吸电子特性。 5-卤化可降低BPE,但在1-甲基化的情况下对BPE几乎没有影响。发现卤化作用降低了N3 PA。胞嘧啶和卤代胞嘧啶的N3 PA顺序如下:1Me5BrC(959.9±3.3 kJ / mol) u3e 1Me5FC(955.7±3.3 kJ / mol) u3e C(949.9±2.8 kJ / mol) u3e 5BrC(930.9± 3.6 kJ / mol) u3e 5FC(926.3±3.5 kJ / mol),表明1-甲基化对N3 PA的影响大于C5-卤化作用。然后,这项工作扩展到研究质子结合的2'二聚体-脱氧胞嘧啶(dCyd)和5-甲基-2'-脱氧胞嘧啶(5MedCyd)。发现胞嘧啶残基的5-全甲基化在2 u27-脱氧核糖糖存在下增加了碱基配对相互作用,因此应该稳定DNA i-基序构象。实验上,(5MedCyd)H +(dCyd)质子结合的二聚体的BPE大于(dCyd)H +(dCyd)均二聚体的BPE,而理论表明单个胞嘧啶残基的5-甲基化几乎没有作用或作用很小BPE降低。因此,胞嘧啶残基的单个5-甲基化应导致DNA i-基序的轻微不稳定。 5MedCyd的N3 PAs为994.4±8.4 kJ / mol,比dCyd的98.3±8.0 kJ / mol大6.1 kJ / mol,这表明甲基化会增加核苷的N3 PA。此处检查的结合二聚体仍然比规范的Watson-Crick G±C和中性C * C碱基对大得多,这表明DNA i-motif构象仍比常规碱基配对更受青睐,因此DNA i-motif构象应修改后保持稳定。在所有情况下,都可以找到TCID测量的BPE与N3 PA和B3LYP计算值之间的极佳一致性,这表明B3LYP计算可用于为相关系统提供可靠的能量预测。

著录项

  • 作者

    Yang Bo;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号