首页> 外文OA文献 >Numerical simulation of a convergent divergent supersonic nozzle flow
【2h】

Numerical simulation of a convergent divergent supersonic nozzle flow

机译:收敛发散超音速喷管流动的数值模拟

摘要

Supersonic fluid flow through a two dimensional Convergent Divergent (CD) nozzle with angle variation added to the divergent section of the nozzle using ANSYS CFX. . Flow undergoes many forms of unique phenomena, including flow separation, unsteadiness, flow mixing, turbulence, Shock Induced Boundary Layer (SIBL) separation and Mach Shock Diamonds, when gas expanded through a CD nozzle. Some of these phenomena lead to energy loss, thereby reducing the overall thrust generated by the nozzle. The thrust loss due to shock waves and boundary layer separations in nozzle flows remains poorly understood, hence failed to reach maximum potential of an engine. In this research, two nozzle configurations, with two symmetric and two asymmetric geometry shapes are investigated. Asymmetric is introduced by adding contraction angles at the divergent section. Numerical analysis is focused on the influence of the nozzle geometry, the Nozzle Area Ratio (NAR) and Nozzle Pressure Ratio (NPR) on the flow properties downstream (divergent section) and the external (jet plume) region of the nozzle. Capturing the boundary layer flow characteristics under strong adverse pressure gradients is of particular interest of this study. The NAR is varied to investigate the gas flow direction and speed, for the asymmetric nozzle in Underexpanded conditions at high NPRs. The two symmetric model configurations, NAR 1.5 and NAR 1.66, have a divergent angle at the throat of 2.801 and 3.89 degrees respectively. The two asymmetric geometry configurations, NAR 1.14 and 1.21, consist of a divergent angle of 2.801 degrees at the throat with contraction angle variations in the divergent section. ANSYS CFX is used to solve time-dependent RANS equations for supersonic two dimensional (2D) nozzle flow with Shear Stress Transport (SST) turbulence model. The NPRs for both symmetric and asymmetric are varied between 1.27 – 12.0 under the sea-level condition for the steady state solutions. It is found that -under low NPRs, the SST model has transcended in performance to capture internal shocks, as well as boundary layer separation, re-circulation zones, shear layer stresses caused by strong adverse pressure gradients accurately in axis-symmetric nozzles. Typical Lambda shocks associated to internal flow separation is not observed for the asymmetry type model, NAR 1.21. Asymmetric nozzles have produced higher Mach number values - than that of symmetric - nozzles. The research has also found that when varying the divergent section of the asymmetric nozzles, the flow path is vectored away from the nozzle axis line at high NPRs. The flow is significantly offset in the desired direction and is considerably different from the traditional Mach Diamond shock pattern observed in symmetric nozzle shapes at the jet plume region. Asymmetric nozzle geometries have a major contribution towards the size of the Mach disks and Diamond shock patterns within the jet plume region. Varying the angle of the top and the bottom walls has a significant effect on the exhaust flow direction. This could be implemented in the future high speed nozzle designs.
机译:超音速流体流经二维会聚发散(CD)喷嘴,使用ANSYS CFX将角度变化添加到喷嘴的发散部分。 。当气体通过CD喷嘴膨胀时,流动会经历多种形式的独特现象,包括流分离,不稳定,流混合,湍流,激振边界层(SIBL)分离和马赫冲击金刚石。这些现象中的一些会导致能量损失,从而降低喷嘴产生的总推力。由于冲击波和喷嘴流中边界层分离所引起的推力损失仍然知之甚少,因此未能达到发动机的最大潜力。在这项研究中,研究了具有两个对称和两个非对称几何形状的两个喷嘴配置。通过在发散部分增加收缩角来引入非对称性。数值分析的重点是喷嘴的流体特性,喷嘴的面积比(NAR)和喷嘴压力比(NPR)对喷嘴下游(发散截面)和外部(射流)区域的流动性的影响。在强的逆压力梯度下捕获边界层流动特性是这项研究的重点。对于高NPR的膨胀不足条件下的非对称喷嘴,NAR进行了变化,以研究气体的流动方向和速度。两个对称模型配置NAR 1.5和NAR 1.66在喉部分别具有2.801和3.89度的发散角。两种非对称几何结构NAR 1.14和1.21由喉部的2.801度发散角和发散部分的收缩角变化组成。 ANSYS CFX用于通过剪切应力传递(SST)湍流模型求解超声速二维(2D)喷嘴流的时变RANS方程。在稳态条件的海平面条件下,对称和非对称的NPR均在1.27 – 12.0之间变化。发现在低NPR的情况下,SST模型的性能已经超越了性能,以捕获内部冲击,以及在轴对称喷嘴中精确地由强烈的不利压力梯度引起的边界层分离,再循环区域,剪切层应力。对于不对称类型的模型NAR 1.21,未观察到与内部流分离相关的典型Lambda冲击。非对称喷嘴产生的马赫数值高于对称喷嘴。研究还发现,当改变非对称喷嘴的发散截面时,在高NPR时,流路的矢量远离喷嘴轴线。流量在所需方向上明显偏心,并且与在射流羽状区域以对称喷嘴形状观察到的传统Mach Diamond冲击波模式有很大不同。不对称的喷嘴几何形状对射流羽流区域内的马赫盘尺寸和钻石冲击波起着重要作用。改变顶壁和底壁的角度会对排气流向产生重大影响。这可以在将来的高速喷嘴设计中实现。

著录项

  • 作者

    Ekanayake S;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号