首页> 外文OA文献 >Sensor management for multi-target tracking using random finite sets
【2h】

Sensor management for multi-target tracking using random finite sets

机译:使用随机有限集进行多目标跟踪的传感器管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sensor management in multi-target tracking is commonly focused on actively scheduling and managing sensor resources to maximize the visibility of states of a set of maneuvering targets in a surveillance area. This project focuses on two types of sensor management techniques: - controlling a set of mobile sensors (sensor control), and - scheduling the resources of a sensor network (sensor selection).​ In both cases, agile sensors are employed to track an unknown number of targets. We advocate a Random Finite Set (RFS)-based approach for formulation of a sensor control/selection technique for multi-target tracking problem. Sensor control/scheduling offers a multi-target state estimate that is expected to be substantially more accurate than the classical tracking methods without sensor management. Searching for optimal sensor state or command in the relevant space is carried out by a decision-making mechanism based on maximizing the utility of receiving measurements.​ In current solutions of sensor management problem, the information of the clutter rate and uncertainty in sensor Field of View (FoV) are assumed to be known in priori. However, accurate measures of these parameters are usually not available in practical situations. This project presents a new sensor management solution that is designed to work within a RFS-based multi-target tracking framework. Our solution does not require any prior knowledge of the clutter distribution nor the probability of detection profile to achieve similar accuracy. Also, we present a new sensor management method for multi-object filtering via maximizing the state estimation confidence. Confidence of an estimation is quantified by measuring the dispersion of the multi-object posterior about its statistical mean using Optimal Sub-Pattern Assignment (OSPA). The proposed method is generic and the presented algorithm can be used with any statistical filter.
机译:多目标跟踪中的传感器管理通常集中于主动调度和管理传感器资源,以最大化监视区域中一组机动目标的状态的可见性。该项目专注于两种类型的传感器管理技术:-控制一组移动传感器(传感器控制),以及-调度传感器网络的资源(传感器选择)。在这两种情况下,都使用敏捷传感器来跟踪未知传感器目标数量。我们提倡基于随机有限集(RFS)的方法来制定针对多目标跟踪问题的传感器控制/选择技术。传感器控制/调度提供了多目标状态估计,该估计比没有传感器管理的传统跟踪方法要准确得多。决策机制基于最大化接收测量的效用的决策机制来搜索相关空间中的最佳传感器状态或命令。在当前传感器管理问题的解决方案中,传感器的杂波率和不确定性信息视图(FoV)假定是先验的。但是,在实际情况下通常无法获得这些参数的准确测量值。该项目提出了一种新的传感器管理解决方案,旨在在基于RFS的多目标跟踪框架内工作。我们的解决方案不需要任何杂波分布的先验知识,也不需要检测轮廓的概率即可达到类似的精度。此外,我们通过最大化状态估计的置信度,提出了一种用于多对象过滤的新传感器管理方法。估计的置信度是通过使用最佳子模式分配(OSPA)测量多对象后验关于其统计平均值的离散度来量化的。所提出的方法是通用的,并且所提出的算法可以与任何统计滤波器一起使用。

著录项

  • 作者

    Khodadadian Gostar A;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号