首页> 外文OA文献 >Numerical and experimental studies of air and particle flow in the realistic human upper airway models
【2h】

Numerical and experimental studies of air and particle flow in the realistic human upper airway models

机译:现实人体上呼吸道模型中空气和颗粒流动的数值和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The human upper airway structure provides access of ambient air to the lower respiratory tract, and it as an efficient filter to cleanse inspired air of dust bacteria, and other environmental pollutants. When air passes through airway passages, it constantly changes direction, which may lead to flow separation, recirculation, secondary flow and shear stress variations along the airway surface. Therefore, it is essential to understanding the air transport processes within the upper airway system. The functions are respiratory defence mechanisms that protecting the delicate tissues of the lower airway from the often harsh conditions of the ambient air. While protecting the lower respiratory system, however, the upper airway itself becomes susceptible to various lesions and infections from filtration of environmental pollutants. Inhaled particle pollutants have been implicated as a potential cause of respiratory diseases. In contrast, inhalation of drug particles deposited directly to the lung periphery results in rapid absorption across bronchopulmonary mucosal membranes and reduction of the adverse reactions in the therapy of asthma and other respiratory disorders. For this purpose, it is desirable that the particles should not deposit in the upper airways before reaching the lung periphery. Therefore, accurate prediction of local and regional pattern of inhaled particle deposition in the human upper airway should provide useful information to clinical researchers in assessing the pathogenic potential and possibly lead to innovation in inhalation therapies. With the development of the increasing computer power and advancement of modeling software, computational fluid dynamics (CFD) technique to study dilute gas-particle flow problems is gradually becoming an attractive investigative tool. This research will provide a more complete picture of the detailed physical processes within the human upper airway system. Owing to the significant advancements in computer technologies, it will allow us to efficiently construct a full-scaled model integrating the various functional biological elements including the nasal, oral, laryngeal and more generations of the bifurcation of the human upper airway system through imagining methodologies. A significant advantage of this human model is that the differences in airway morphology and ventilation parameters that exist between healthy and diseased airways, and other factors, can be accommodated. This model will provide extensive experimental and numerical studies to probe significant insights to the particle deposition characte ristics within the complex airway passages and better understanding of any important phenomena associated with the fluid-particle flow. It will also lead to an improved understanding of fluid/particle transport under realistic physiological conditions. New concepts and numerical models to capture the main features observed in the experimental program and innovative techniques will be formulated. The ability to numerically model and a better physical understanding of the complex phenomena associated with the fluid dynamics and biological processes will be one of the major medical contributions especially targeting drug delivery and health risk analysis. Its biomedical engineering significance lies in the fact that this will enable us to accurately evaluate potential biological effects by the inhaled drug particles, facilitating new drug research and development.
机译:人体的上呼吸道结构提供了周围空气进入下呼吸道的通道,并且它是一种有效的过滤器,可清除吸入的空气中的粉尘细菌和其他环境污染物。当空气通过气道通道时,它会不断改变方向,这可能会导致沿气道表面的流动分离,再循环,二次流和切应力变化。因此,必须了解上呼吸道系统内的空气传输过程。这些功能是呼吸防御机制,可保护下呼吸道的脆弱组织免受环境空气的恶劣影响。但是,在保护下呼吸道系统的同时,上呼吸道本身也容易受到环境污染物过滤的各种损害和感染的影响。吸入颗粒污染物已被认为是呼吸系统疾病的潜在原因。相反,吸入直接沉积在肺周围的药物颗粒会导致跨支气管肺粘膜的快速吸收,并减少哮喘和其他呼吸系统疾病的不良反应。为此目的,希望颗粒在到达肺部外围之前不应沉积在上呼吸道中。因此,准确预测人上呼吸道吸入颗粒沉积的局部和区域模式应该为临床研究人员评估病原潜能提供有用的信息,并可能导致吸入疗法的创新。随着计算机功能的增强和建模软件的发展,用于研究稀薄气体颗粒流动问题的计算流体力学(CFD)技术正逐渐成为一种有吸引力的研究工具。这项研究将提供人类上呼吸道系统内详细物理过程的更完整描述。由于计算机技术的重大进步,这将使我们能够通过构想方法有效地构建一个包含各种功能性生物要素的完整模型,这些要素包括鼻,口,喉和人类上呼吸道系统的更多分支。该人体模型的显着优点是可以适应健康和患病气道之间存在的气道形态和通气参数差异,以及其他因素。该模型将提供广泛的实验和数值研究,以探索对复杂气道内颗粒沉积特性的重要见解,并更好地理解与流体-颗粒流相关的任何重要现象。它还将使人们对现实的生理条件下的流体/颗粒传输有更好的了解。将制定新的概念和数值模型,以捕捉在实验程序和创新技术中观察到的主要特征。对与流体动力学和生物过程有关的复杂现象进行数值建模和更好地物理理解的能力将是主要的医学贡献之一,尤其是针对药物输送和健康风险分析。其生物医学工程意义在于,这将使我们能够准确评估吸入药物颗粒的潜在生物学效应,从而促进新药的研发。

著录项

  • 作者

    Li H;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号