首页> 外文OA文献 >Enhancing emergency response in short-notice bushfire evacuation
【2h】

Enhancing emergency response in short-notice bushfire evacuation

机译:在短暂的森林大火疏散中加强应急响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A bushfire, or a wildfire, is a freely burning, uncontrolled and unplanned fire in regional and rural areas. The impacts of bushfire range from destruction of properties and critical infrastructure, supply chain disruptions, to psychological damage, injuries and fatalities of people and wildlife. In the USA, for example, there are 60,000 to 80,000 wildfires burning 3 to 10 million acres of land, causing 4,000 fatalities and 20,000 injuries each year. The Fort McMurray 2016 bushfire in Canada destroyed approximately 2,400 buildings and resulted in evacuation of 80,000 people and the estimated wildfire insurance payouts are around CAD$9 billion. In Russia, the total cost of damage from bushfires in 2010 was about USD$15 billion in addition to 55,526 casualties caused by bushfire heat waves. In Australia, bushfires have claimed hundreds of lives and resulted in billions of dollars of damage. In Victoria alone over the last few decades, 300 people have lost their lives and 4,185 have suffered serious injuries. 32 per cent of all bushfire fatalities in Australian history (176 out of 552 deaths) were associated with short-notice evacuation. The more recent 2009 Black Saturday bushfires resulted in 173 deaths, displacement of more than 7,500 residents, and caused $4.5 billion dollars in financial losses. Notably, over 50 per cent of those who were evacuated on the Black Saturday were last-minute evacuees. Short-notice bushfire evacuation is a complex, dynamic and multifaceted problem. Complexity in evacuation emanates due to multi-stage process, which necessitates operational decisions and actions to be simultaneously performed. Time-sensitive decisions in bushfire evacuation therefore entail assigning and allocating evacuees to secured shelters, selecting suitable vehicles and choosing optimal yet low-risk routes. Uncertainties in time-windows, network disruptions and bushfire propagation make the evacuation problem more dynamic and multifaceted. Any operational planning failure could adversely affect the efficiency and effectiveness of disaster response and hence could increase the risk of human injuries or fatalities. Emergency services agencies therefore require a robust decision support tool that enables simultaneous processing of complex decisions to help minimise risk and cost. This thesis develops multi-objective optimisation models to enhance emergency response and operational planning during a short-notice bushfire evacuation. Four key interrelated research questions are answered as follows: What optimisation approaches can be used to maximise short-notice evacuation under a given set of bushfire scenarios?; What is the optimum allocation of shelters required to maximise spatial coverage of late evacuees in bushfire affected area?; How can the most efficient routes (i.e. safest and shortest) be determined to transfer people from assembly points to designated shelters?; How can vehicle assignment and scheduling be optimised to maximise short notice evacuation within a specified time window? Three key optimisation models are developed to compute solutions to shelter allocation, vehicle assignment and routing problems with time window constraints and disruption scenarios under conditions of uncertainty. (I) The Late Evacuation during Bushfire to Multiple Destinations with Time Windows (LEBMD-TW) is a mixed-integer multi-objective optimisation model. The -constraint method is applied as the solution approach. (II) The Capacitated Multiple Destination Vehicle Routing Problem with Time Window (CMDVRP-TW) is a novel vehicle routing problem- model integrating several VRP variants. A heuristic solution approach is developed to tackle complex vehicle routing problem. The effectiveness of proposed heuristic algorithm is evaluated by comparison with a Meta-heuristic genetic algorithm using set of various computational experiments. Finally, (III) Possibilistic Capacitated Multiple Destination Vehicle Routing Problem with Time Window (P-CMDVRP-TW) is presented as the key contribution of this thesis because of the novelty of integrating the CMDVRP-TW model with fuzzy set theory concepts. These optimisation models are pilot tested in a small numerical experiment in Lake Eildon Park in Victoria, Australia. A real case study context is then presented using the 2009 Black Saturday bushfires in Victoria. Three plausible bushfire scenarios are considered. The baseline scenario represents the propagation of actual bushfires. The minor disruption scenario incorporates shutting down of a high-capacity shelter, whilst the major disruption scenario disconnects a shelter and cut off the main arterial road from evacuation networks. The models generated shortest and safest routes to transfer late evacuees from bushfire-affected areas within the set time windows, taking into account road accessibility and available resources. The LEBMD-TW model efficiently assigned available shelters to absorb all 1,100 late evacuees transferred from assembly points in the bushfire affected areas by a fleet of five buses and twelve vans. The CMDVRP-TW model suggests the evacuation of late evacuees by seven rescue vehicles in four shelters is feasible. A decrease in the number of assigned vehicles is possible, however, it increases the risk of transporting evacuees via high risk routes. The P-CMDVRP-TW model generated optimal routes and evacuation solutions under uncertainty and hard constraints. It was possible to evacuate equal numbers of evacuees by using only six buses and four shelters under low disruption risk. The P-CMDVRP-TW model under disruption scenarios generated an evacuation plan to transfer all late evacuees with seven buses and four shelters. The computed solutions demonstrate that short-notice evacuation is manageable with advanced operational planning. The models are useful in the development of emergency plans and evacuation strategies to enhance rapid response to last-minute evacuation in a bushfire emergency. There are four key implications for short-notice evacuation planning, (1) the capacity and capability of emergency services agencies would be enhanced to identify optimal allocation of shelter to transfer evacuees under any emergency evacuation scenarios; (2) rescue vehicles required to optimise the spatial coverage would be effectively determined; (3) emergency vehicles would be instantaneously scheduled which would lead to an improved efficiency and effectiveness of emergency response; and (4) a comprehensive transit plan can be developed using mapping of routes to mitigate potential risks for each road link in the network. Considering shadow evacuation and background traffic as a key caveat to the emergency evacuation modelling could be an interesting future study as well. With appropriate model calibration and adjustment, this modelling approach could also be applied to other disasters such as flooding and cyclones, which are also widely prevalent in Australia and other countries.
机译:丛林大火或野火是区域和农村地区的自由燃烧,不受控制和计划外的火灾。丛林大火的影响范围包括财产和关键基础设施的破坏,供应链中断,心理损害,人员和野生生物的伤亡。例如,在美国,每年有60,000至80,000场野火燃烧3至1,000万英亩的土地,每年造成4,000人死亡和20,000人受伤。加拿大的麦克默里堡2016年丛林大火摧毁了大约2,400座建筑物,疏散了80,000人,估计的野火保险支出约为90亿加元。在俄罗斯,2010年丛林大火造成的总损失约为150亿美元,此外还有丛林大火热浪造成的55,526人伤亡。在澳大利亚,丛林大火夺走了数百人的生命,并造成数十亿美元的损失。在过去的几十年中,仅在维多利亚州,就有300人丧生,4,185人受到重伤。澳大利亚历史上所有丛林大火死亡人数中有32%(552例死亡中的176例)与紧急疏散有关。最近的2009年“黑色星期六”丛林大火导致173人死亡,超过7,500名居民流离失所,并造成45亿美元的财务损失。值得注意的是,在黑色星期六撤离的人中有50%以上是最后一刻撤离的人。短暂的丛林大火疏散是一个复杂,动态和多方面的问题。疏散的复杂性归因于多阶段过程,这就需要同时执行操作决策和行动。因此,丛林大火疏散中对时间敏感的决策需要将疏散人员分配和分配到安全的避难所,选择合适的车辆并选择最佳而低风险的路线。时间窗口,网络中断和林区大火传播的不确定性使疏散问题更加动态和多方面。任何运营计划失败都可能对灾难响应的效率和有效性产生不利影响,从而可能增加人身伤害或死亡的风险。因此,紧急服务机构需要强大的决策支持工具,该工具能够同时处理复杂的决策,以最大程度地降低风险和成本。本文开发了多目标优化模型,以在短时疏散丛林火疏散期间增强应急响应和作战计划。四个关键的相互关联的研究问题回答如下:在给定的林区大火情景下,可以使用哪种优化方法来最大程度地缩短短通知疏散时间?在林区大火影响地区最大限度地扩大后期撤离人员的空间覆盖范围所需的最佳避难所分配是什么?如何确定最有效的路线(即最安全和最短)将人员从集合点转移到指定的庇护所?如何优化车辆分配和调度,以在指定的时间范围内最大限度地缩短短时疏散?开发了三个关键的优化模型来计算解决方案,以解决在不确定条件下具有时间窗口约束和干扰情况的住房分配,车辆分配和路线问题。 (I)带时间窗的林区大火期间向多个目的地的后期疏散(LEBMD-TW)是一个混合整数多目标优化模型。 -constraint方法用作解决方案。 (二)带有时间窗的能力限制的多目的地车辆路径问题(CMDVRP-TW)是一种新颖的车辆路径问题模型,集成了多个VRP变体。开发了一种启发式解决方案,以解决复杂的车辆路线问题。通过使用各种计算实验集与元启发式遗传算法进行比较,评估了所提出的启发式算法的有效性。最后,由于将CMDVRP-TW模型与模糊集理论概念相结合的新颖性,提出了(III)具有时间窗的可能容量多目的地车辆路径问题(P-CMDVRP-TW)。这些优化模型在澳大利亚维多利亚州的艾尔顿湖公园的一个小型数值实验中进行了先导测试。然后使用2009年维多利亚州的“黑色星期六”丛林大火展示了一个真实的案例研究环境。考虑了三种可能的林区大火情况。基线情况代表实际的林区大火的蔓延。轻微破坏情景包括关闭大容量避难所,而主要破坏情景将避难所断开,并切断疏散网络的主要干道。这些模型在考虑到道路通行性和可用资源的情况下,在设定的时间范围内生成了最短和最安全的路线,以从森林大火灾区转移后期疏散人员。 LEBMD-TW模型有效地分配了可用的庇护所,以吸收所有1,由五辆公共汽车和十二辆货车组成的车队从丛林大火影响地区的集合点转移了100名后期撤离人员。 CMDVRP-TW模型表明,在四个避难所中由七辆救援车辆疏散晚疏散人员是可行的。减少分配车辆的数量是可能的,但是,这增加了通过高风险路线运输撤离人员的风险。 P-CMDVRP-TW模型在不确定性和严格约束下生成了最佳路线和疏散解决方案。仅使用六辆公共汽车和四个避难风险较低的避难所就可以撤离相等数量的撤离人员。在破坏情景下的P-CMDVRP-TW模型产生了一个疏散计划,该计划将所有晚疏散人员转移到7辆公共汽车和4个避难所。计算得出的解决方案表明,通过高级运营计划可以轻松解决短时疏散问题。这些模型可用于制定紧急计划和疏散策略,以增强对大火紧急情况下对最后一刻疏散的快速响应。短期撤离计划有四个关键含义:(1)紧急服务机构的能力和能力将得到增强,以在任何紧急撤离情况下确定最佳的住所分配,以转移撤离人员; (2)有效确定优化空间覆盖率所需的救援车辆; (3)紧急车辆将被即时调度,这将提高紧急响应的效率和效力; (4)可以使用路线图来制定全面的运输计划,以减轻网络中每个道路链接的潜在风险。将影子疏散和背景交通作为紧急疏散建模的主要注意事项也可能是一个有趣的未来研究。通过适当的模型校准和调整,这种建模方法也可以应用于其他灾害,例如洪水和飓风,这些灾害在澳大利亚和其他国家/地区也很普遍。

著录项

  • 作者

    Shahparvari S;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号