首页> 外文OA文献 >Identifying preferred solutions for multi-objective aerodynamic design optimization
【2h】

Identifying preferred solutions for multi-objective aerodynamic design optimization

机译:确定多目标空气动力学设计优化的首选解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aerodynamic designers rely on high-fidelity numerical models to approximate, within reasonable accuracy, the flow around complex aerodynamic shapes. The ability to improve the flow field behaviour through shape modifications has led to the use of optimization techniques. A significant challenge to the application of evolutionary algorithms for aerodynamic shape optimization is the often excessive number of expensive computational fluid dynamic evaluations required to identify optimal designs. The computational effort is intensified when considering multiple competing objectives, where a host of trade-off designs are possible. This research focuses on the development of control measures to improve efficiency and incorporate the domain knowledge and experience of the designer to facilitate the optimization process. A multi-objective particle swarm optimization framework is developed, which incorporates designer preferences to provide further guidance in the search. A reference point is projected on the objective landscape to guide the swarm towards solutions of interest. This point reflects the preferred compromise and is used to focus all computing effort on exploiting a preferred region of the Pareto front. Data mining tools are introduced to statistically extract information from the design space and confirm the relative influence of both variables and objectives to the preferred interests of the designer. The framework is assisted by the construction of time-adaptive Kriging models, for the management of high-fidelity problems restricted by a computational budget. A screening criterion to locally update the Kriging models in promising areas of the design space is developed, which ensures the swarm does not deviate from the preferred search trajectory. The successful integration of these design tools is facilitated through the specification of the reference point, which can ideally be based on an existing or target design. The over-arching goal of the developmental effort is to reduce the often prohibitive cost of multi-objective design to the level of practical affordability in aerospace problems. The superiority of the proposed framework over more conventional search methods is conclusively demonstrated via a series of experiments and aerodynamic design problems.
机译:空气动力学设计师依靠高保真数值模型在合理的精度内近似复杂的空气动力学形状周围的流动。通过形状修改来改善流场性能的能力导致了优化技术的使用。进化算法在空气动力学形状优化中的应用面临的重大挑战是,通常需要大量的昂贵的计算流体动力学评估才能确定最佳设计。当考虑多个相互竞争的目标时,会增加计算量,在这些目标中可能会有很多折衷的设计。这项研究专注于控制措施的开发,以提高效率并吸收设计人员的领域知识和经验,以促进优化过程。开发了一个多目标粒子群优化框架,该框架结合了设计人员的偏好以在搜索中提供进一步的指导。将参考点投影到客观景观上,以引导群体朝着感兴趣的方向发展。这一点反映了首选的折衷方案,并用于将所有计算工作集中在利用Pareto前沿的首选区域上。引入了数据挖掘工具,以统计方式从设计空间中提取信息,并确认变量和目标对设计人员的首选利益的相对影响。该框架由时间适应性Kriging模型的构建来辅助,用于管理受计算预算限制的高保真问题。制定了在设计空间有希望的区域中局部更新Kriging模型的筛选标准,以确保该群不会偏离首选的搜索轨迹。通过参考点的规范,可以方便地成功集成这些设计工具,参考点可以理想地基于现有设计或目标设计。开发工作的总体目标是将多目标设计通常令人望而却步的成本降低到航空航天问题中的实际可承受性水平。通过一系列实验和空气动力学设计问题,最终证明了所提出的框架相对于传统搜索方法的优越性。

著录项

  • 作者

    Carrese R;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号