首页> 外文OA文献 >Multi-sensor data fusion techniques for RPAS detect, track and avoid
【2h】

Multi-sensor data fusion techniques for RPAS detect, track and avoid

机译:用于Rpas的多传感器数据融合技术检测,跟踪和避免

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate and robust tracking of objects is of growing interest amongst the computer vision scientific community. The ability of a multi-sensor system to detect and track objects, and accurately predict their future trajectory is critical in the context of mission- and safety-critical applications. Remotely Piloted Aircraft System (RPAS) are currently not equipped to routinely access all classes of airspace since certified Detect-and-Avoid (DAA) systems are yet to be developed. Such capabilities can be achieved by incorporating both cooperative and non-cooperative DAA functions, as well as providing enhanced communications, navigation and surveillance (CNS) services. DAA is highly dependent on the performance of CNS systems for Detection, Tacking and avoiding (DTA) tasks and maneuvers. In order to perform an effective detection of objects, a number of high performance, reliable and accurate avionics sensors and systems are adopted including non-cooperative sensors (visual and thermal cameras, Laser radar (LIDAR) and acoustic sensors) and cooperative systems (Automatic Dependent Surveillance-Broadcast (ADS-B) and Traffic Collision Avoidance System (TCAS)). In this paper the sensors and system information candidates are fully exploited in a Multi-Sensor Data Fusion (MSDF) architecture. An Unscented Kalman Filter (UKF) and a more advanced Particle Filter (PF) are adopted to estimate the state vector of the objects based for maneuvering and non-maneuvering DTA tasks. Furthermore, an artificial neural network is conceptualised/adopted to exploit the use of statistical learning methods, which acts to combined information obtained from the UKF and PF. After describing the MSDF architecture, the key mathematical models for data fusion are presented. Conceptual studies are carried out on visual and thermal image fusion architectures.
机译:在计算机视觉科学界中,对对象的准确和可靠的跟踪越来越引起人们的关注。在任务和安全至关重要的应用中,多传感器系统检测和跟踪物体并准确预测其未来轨迹的能力至关重要。由于尚未开发经过认证的“避免检测”(DAA)系统,因此目前尚不具备远程驾驶飞机系统(RPAS)可以常规访问所有类别的空域的功能。可以通过合并合作和非合作DAA功能以及提供增强的通信,导航和监视(CNS)服务来实现这种功能。 DAA高度依赖于CNS系统在检测,处理和避免(DTA)任务和操作方面的性能。为了有效地检测物体,采用了许多高性能,可靠和准确的航空电子传感器和系统,包括非合作传感器(视觉和热像仪,激光雷达(LIDAR)和声学传感器)和合作系统(自动广播相关监视(ADS-B)和交通防撞系统(TCAS))。在本文中,传感器和系统信息候选对象已在多传感器数据融合(MSDF)架构中得到充分利用。采用无味卡尔曼滤波器(UKF)和更高级的粒子滤波器(PF)来估计基于机动和非机动DTA任务的对象的状态向量。此外,人工神经网络被概念化/被采用以利用统计学习方法的使用,该方法用于合并从UKF和PF获得的信息。在描述了MSDF体系结构之后,提出了用于数据融合的关键数学模型。对视觉和热图像融合架构进行了概念研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号