首页> 外文OA文献 >Hybrid deflection prediction for machining thin-wall titanium alloy aerospace component
【2h】

Hybrid deflection prediction for machining thin-wall titanium alloy aerospace component

机译:加工薄壁钛合金航空航天零件的混合挠度预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Machining of aerospace structural components involves many thin-wall rib and flange sections. These thin-wall sections are dictated by design consideration to meet required strength and weight constraints. These components are either forged or cast to the approximate final shape and the end milling process is used to finish the parts. Alternatively, the component is machined from a solid block of material by end milling with roughing and finishing cuts. During machining, the cutting forces cause deflection of the thin-wall section, leading to dimensional form errors that cause the finished part to be out of specification. In this thesis, a new methodology for the prediction of wall deflection during machining of thin-wall feature is presented. The new methodology aims to increase the efficiency on modelling the deflection prediction in machining thin-wall component. The prediction methodology is based on a combination of finite element method and statistical analysis. It consists of a feature based approach of parts creation, finite element analysis of material removal and statistical regression analysis of deflection associated with cutting parameters and component attributes. The model is developed to take into account the tool-work geometries on material removal process during machining process. Mathematical models are developed for the wall deflection correlated with cutting parameters and component attributes. The prediction values have been validated by machining tests on titanium alloys parts and show good agreement between simulation model and experimental data. In addition, the cutter compensation method derived from the deflection prediction values can be used to reduce the magnitude of surface error, thus improving the component accuracy for machining thin-wall feature. By adopting the cutter compensation method, only one machining pass is required to machine the thin-wall feature. This compares favourably to the current practice in step method which requires many machining passes. All research results have been derived for four different cases of typical aerospace component, but it is shown that these results can be applicable for other component shape and materials. To assist commercial applications, a customized computer program has been developed for the hybrid model. The computer program is an integrated data exchanges between modules upon users input on the design information and machining parameter for automatically generate the solid model, material removal model and FEM analysis. The new method is able to reduce the analysis time from weeks to hours.
机译:航空航天结构零件的机加工涉及许多薄壁肋和法兰部分。这些薄壁部分由设计考虑因素决定,以满足所需的强度和重量约束。这些组件可以锻造或铸造成近似的最终形状,并使用端铣削工艺精加工零件。可替代地,通过用粗加工和精加工的端铣削从固体的材料块加工零件。在加工过程中,切削力导致薄壁部分变形,从而导致尺寸形状误差,从而导致成品零件不合格。本文提出了一种预测薄壁特征加工中壁偏斜的新方法。新方法旨在提高建模薄壁零件中的变形预测的效率。预测方法基于有限元方法和统计分析的结合。它包括基于特征的零件创建方法,材料去除的有限元分析以及与切削参数和零件属性相关的变形的统计回归分析。开发该模型时要考虑到加工过程中材料去除过程中的工具工作几何形状。针对与切割参数和部件属性相关的壁挠度,开发了数学模型。预测值已经通过钛合金零件的机加工测试得到验证,并且在仿真模型和实验数据之间显示出良好的一致性。此外,可以使用从挠度预测值得出的刀具补偿方法来减小表面误差的幅度,从而提高加工薄壁特征的零件精度。通过采用刀具补偿方法,仅需一次加工即可加工薄壁特征。这与需要很多加工道次的步进方法的当前实践相比是有利的。所有研究结果都是针对四种典型航空航天部件的情况得出的,但结果表明,这些结果可适用于其他部件形状和材料。为了辅助商业应用,已经为混合模型开发了定制的计算机程序。计算机程序是用户输入设计信息和加工参数后,模块之间的集成数据交换,用于自动生成实体模型,材料去除模型和FEM分析。新方法能够将分析时间从几周减少到几小时。

著录项

  • 作者

    Raja Abdullah R;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号