首页> 外文OA文献 >Numerical modelling of inhaled particle transport and deposition in human and rat nasal cavities
【2h】

Numerical modelling of inhaled particle transport and deposition in human and rat nasal cavities

机译:人体和大鼠鼻腔吸入颗粒运输和沉积的数值模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

This thesis focuses on health risk assessment of inhaled particles on human nasal cavities. Inhaled micron- and nano-sized particles may exhibit therapeutic or toxic effects on the human nasal cavity. The nasal cavity play an important role in particle filtering, air-distribution, and air-conditioning. Due to its invasive nature, traditional in-vivo research have been challenging in narrow human nasal airways. Conventionally, laboratory rats have been used to predict human's toxicological response to inhaled particle. Experiments on human nasal replica casts have been widely used to study the fluid dynamics as well as toxicological studies associated with particle deposition. Two major research gaps remain between these preliminary studies and clinical applications. Because of the intricate nasal geometry, it is difficult to accurately visualise the results inside the nasal cavity or on the nasal wall. Due to significant nasal geometric difference, the reliability of existing extrapolation from rat to human is questioned. Recently, with rapid development of medical imaging and computational algorithm, Computational Fluid Dynamics (CFD) provides a powerful approach to conduct simulation on nasal models, which can be accurately reconstructed from CT-scan. The main body of this thesis is composed of four parts. In the first part (Chapter 2-3), I performed a comprehensive literature review, including anatomy, extit{in-vivo} and extit{in-vitro} experimental studies and numerical stdies, to identify the research gaps between previous studies and real clinical application. In the second part (Chapter 4), I developed an unique surface-mapping technique to project the pressure and wall shear stress distributions from 3D to 2D domain. This technique lays a solid foundation for visualising particle deposition locations on the entire nasal wall. In the third part (Chapter 5), I investigated two factors that influence particle deposition within human nasal cavities. The breathing zone near nostrils dominates micron-sized particles' trajectories and thus influencing both the deposition efficiency and the deposition pattern. With respect to nano-sized particles, I performed simulation for welding particles and found the shape factor of agglomerates play a role in deposition patterns not only in the nasal cavity, but also in the entire upper respiratory airway. In the fourth part (Chapter 6-7), a CAD model of Sprague-Dawley rat was reconstructed from Micro-CT scan and simulation were performed to compare with human case. Despite the visualisation application, the surface-mapping technique also enables an approach to eliminate individual and inter-species variations by normalising the 2D domain. Airflow behaviour, pressure and wall shear stress distributions, microparticle and nanoparticle deposition patterns were compared between two species. I proposed a scaling factor as a first step to establish a practical extrapolation model from rat to human. In summary, I developed novel techniques to gain insight into the fluid dynamics and particle movement within human and rat nasal cavities. This allows complete data access in the nasal cavity, thus enabling direct inter-individual and inter-species comparisons. Airflow behaviour, pressure and wall shear stress distributions, and detailed particle deposition patterns were examined. Results were compared between human and rat to establish an appropriate extrapolation method. This study lays a solid foundation to perform CFD simulation in lower respiratory system and sub-layers such as mucus, tissue and blood flow, which are critical for future clinical applications.
机译:本文的重点是评估人鼻腔吸入颗粒的健康风险。吸入的微米级和纳米级颗粒可能对人的鼻腔表现出治疗或毒性作用。鼻腔在微粒过滤,空气分配和空调中起着重要作用。由于其侵入性,传统的体内研究在狭窄的人鼻气道中一直具有挑战性。按照惯例,实验室大鼠已被用于预测人类对吸入颗粒的毒理学反应。关于人类鼻腔复制品的实验已被广泛用于研究流体动力学以及与颗粒沉积有关的毒理学研究。这些初步研究与临床应用之间仍然存在两个主要的研究差距。由于复杂的鼻腔几何形状,很难准确地显示鼻腔内部或鼻壁上的结果。由于明显的鼻腔几何差异,对从大鼠到人的现有外推法的可靠性提出了质疑。近年来,随着医学成像和计算算法的快速发展,计算流体动力学(CFD)提供了一种强大的方法来对鼻腔模型进行仿真,可以通过CT扫描准确地重建该模型。本论文的主体由四个部分组成。在第一部分(第2-3章)中,我进行了全面的文献综述,包括解剖学, textit {in-vivo}和 textit {in-vitro}实验研究和数值研究,以找出先前研究之间的研究差距和实际的临床应用。在第二部分(第4章)中,我开发了一种独特的表面映射技术来投影从3D到2D域的压力和壁剪应力分布。该技术为可视化整个鼻壁上的颗粒沉积位置奠定了坚实的基础。在第三部分(第5章)中,我研究了两个影响人鼻腔内颗粒沉积的因素。鼻孔附近的呼吸区控制着微米级颗粒的轨迹,因此影响沉积效率和沉积模式。对于纳米颗粒,我进行了焊接颗粒的模拟,发现团聚物的形状因子不仅在鼻腔中而且在整个上呼吸道中都在沉积模式中起作用。在第四部分(第6-7章)中,通过Micro-CT扫描重建了Sprague-Dawley大鼠的CAD模型,并进行了仿真以与人的情况进行比较。尽管有可视化应用程序,但表面映射技术还通过标准化2D域实现了消除个体和种间变异的方法。比较了两个物种之间的气流行为,压力和壁切应力分布,微粒和纳米颗粒沉积模式。我提出了比例因子,作为建立从大鼠到人的实用外推模型的第一步。总而言之,我开发了新颖的技术来深入了解人和大鼠鼻腔内的流体动力学和粒子运动。这允许在鼻腔中进行完整的数据访问,从而实现直接的个体间和种间比较。检查了气流行为,压力和壁切应力分布以及详细的颗粒沉积模式。比较人与大鼠的结果,以建立适当的外推方法。这项研究为在下呼吸道系统和黏液,组织和血流等亚层进行CFD模拟奠定了坚实的基础,这对于未来的临床应用至关重要。

著录项

  • 作者

    Shang Y;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号