首页> 外文OA文献 >Statistical post-editing and quality estimation for machine translation systems
【2h】

Statistical post-editing and quality estimation for machine translation systems

机译:机器翻译系统的统计后编辑和质量评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical post-editing (SPE) has been successfully applied to RBMT systems and, to a less successful extent, to some SMT systems. This thesis investigates the impact of SPE on SMT systems. We apply SPE to an SMT system using a new context-modelling approach to preserve some aspects of source information in the second stage translation. This technique yields mixed results, but fails to consistently improve the output over the baseline. Furthermore, we compared the results to those of an RBMT+SPE system and a pure SMT system, using both automatic and human evaluation methods. Results show that while automatic evaluation metrics favour a pure SMT system, manual evaluators prefer the output provided by the combined RBMT+SPE system. We investigate the use machine learning methods to predict which sentences would benefit from post-editing, however, as the oracle score for both SMT and SMT+SPE was not much higher than the two systems alone, we decided to compare two systems that had a higher upper bound. Combining our analysis with machine learning techniques for quality estimation, we are able to improve the overall output by automatically selecting the best sentences from each of the SMT and RBMT+SPE systems.
机译:统计后编辑(SPE)已成功应用于RBMT系统,但在某些程度上不成功,已应用于某些SMT系统。本文研究了SPE对SMT系统的影响。我们使用新的上下文建模方法将SPE应用于SMT系统,以在第二阶段翻译中保留源信息的某些方面。这种技术产生的结果参差不齐,但是无法始终如一地提高基线以上的输出。此外,我们使用自动和人工评估方法将结果与RBMT + SPE系统和纯SMT系统的结果进行了比较。结果表明,尽管自动评估指标偏爱纯SMT系统,但手动评估人员更喜欢RBMT + SPE组合系统提供的输出。我们调查了使用机器学习方法来预测哪些句子将从后期编辑中受益,但是,由于SMT和SMT + SPE的oracle得分均不比两个系统高很多,因此我们决定比较两个具有上限更高。将我们的分析与机器学习技术相结合以进行质量估计,我们能够通过自动从SMT和RBMT + SPE系统中选择最佳语句来提高整体输出。

著录项

  • 作者

    Bechara Hanna;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号