首页> 外文OA文献 >Community post-editing of machine-translated user-generated content
【2h】

Community post-editing of machine-translated user-generated content

机译:社区对机器翻译的用户生成内容进行后期编辑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the constant growth of user-generated content (UGC) online, the demand for quick translations of large volumes of texts increases. This is often met with a combination of machine translation (MT) and post-editing (PE). Despite extensive research in post-editing with professional translators or translation students, there are few PE studies with lay post-editors, such as domain experts. This thesis explores lay post-editing as a feasible solution for UGC in a technology support forum, machine translated from English into German. This context of lay post-editing in an online community prompts for a redefinition of quality.udWe adopt a mixed-methods approach, investigating PE quality quantitatively with an error annotation, a domain specialist evaluation and an end-user evaluation. We further explore post-editing behaviour, i.e. specific edits performed, from a qualitative perspective. With the involvement of community members, the need for a PE competence model becomes even more pressing. We investigate whether Gopferich’s translation competence (TC) model (2009) may serve as a basis for lay post-editing.udOur quantitative data proves with statistical significance that lay post-editing is a feasible concept, producing variable output, however. On a qualitative level, post-editing is successful for short segments requiring ~35% post-editing effort. No post-editing patterns were detected for segments requiring more PE effort. Lastly, our data suggests that PE quality is largely independent of the profile characteristics measured.udThis thesis constitutes an important advance in lay post-editing and benchmarking the evaluation of its output, uncovering difficulties in pinpointing reasons for variance in the resulting quality.
机译:随着在线用户生成内容(UGC)的不断增长,对大量文本进行快速翻译的需求不断增加。机器翻译(MT)和后期编辑(PE)经常结合在一起使用。尽管在与专业翻译人员或翻译学生进行后期编辑方面进行了广泛的研究,但很少有专门从事后期编辑的体育研究,例如领域专家。本文在技术支持论坛中探讨了将后置编辑作为UGC的可行解决方案,并将其从英语机器翻译成德语。 ud我们采用一种混合方法,通过错误注释,领域专家评估和最终用户评估对PE质量进行定量研究,从而重新定义了质量。我们将从质的角度进一步探讨编辑后的行为,即执行的特定编辑。随着社区成员的参与,对体育能力模型的需求变得更加紧迫。我们调查了Gopferich的翻译能力(TC)模型(2009)是否可以作为非专业编辑的基础。 ud我们的定量数据具有统计意义,证明非专业编辑是一个可行的概念,但是会产生可变的输出。在质量上,短片段的后期编辑是成功的,需要约35%的后期编辑工作。对于需要更多PE努力的部分,未检测到后期编辑模式。最后,我们的数据表明,PE的质量很大程度上不受测得的轮廓特征的影响。 ud本论文构成了非专业后期编辑和基准测试其输出评估的重要进展,发现了难以查明导致质量差异的原因。

著录项

  • 作者

    Mitchell Linda;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号