首页> 外文OA文献 >Detecting change in complex process systems with phase space methods
【2h】

Detecting change in complex process systems with phase space methods

机译:使用相空间方法检测复杂过程系统的变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Model predictive control has become a standard for most control strategies in modernprocess plants. It relies heavily on process models, which might not always befundamentally available, but can be obtained from time series analysis. The first stepin any control strategy is to identify or detect changes in the system, if present. Thedetection of such changes, known as dynamic changes, is the main objective of thisstudy. In the literature a wide range of change detection methods has been developedand documented. Most of these methods assume some prior knowledge of the system,which is not the case in this study. Furthermore a large number of change detectionmethods based on process history data assume a linear relationship between processvariables with some stochastic influence from the environment. These methods arewell developed, but fail when applied to nonlinear dynamic systems, which is focusedon in this study.A large number of the methods designed for nonlinear systems make use of statisticsdefined in phase space, which led to the method proposed in this study. Thecorrelation dimension is an invariant measure defined in phase space that is sensitiveto dynamic change in the system. The proposed method uses the correlationdimension as test statistic with and moving window approach to detect dynamicchanges in nonlinear systems.The proposed method together with two dynamic change detection methods withdifferent approaches was applied to simulated time series data. The first methodconsidered was a change-point algorithm that is based on singular spectrum analysis.The second method applied to the data was mutual cross prediction, which utilises theprediction error from a multilayer perceptron network. After the proposed method wasapplied to the data the three methods’ performance were evaluated.Time series data were obtained from simulating three systems with mathematicalequations and observing one real process, the electrochemical noise produced by acorroding system. The three simulated systems considered in this study are theBelousov-Zhabotinsky reaction, an autocatalytic process and a predatory-prey model.The time series obtained from observing a single variable was considered as the onlyinformation available from the systems. Before the change detection methods wereapplied to the time series data the phase spaces of the systems were reconstructed withtime delay embedding.All three the methods were able to do identify the change in dynamics of the timeseries data. The change-point detection algorithm did however produce a haphazard behaviour of its detection statistic, which led to multiple false alarms beingencountered. This behaviour was probably due to the distribution of the time seriesdata not being normal. The haphazard behaviour reduces the ability of the method todetect changes, which is aggravated by the presence of chaos and instrumental ormeasurement noise. Mutual cross prediction is a very successful method of detectingdynamic changes and is quite robust against measurement noise. It did howeverrequire the training of a multilayer perceptron network and additional calculations thatwere time consuming. The proposed algorithm using the correlation dimension as teststatistic with a moving window approach is very useful in detecting dynamic changes.It produced the best results on the systems considered in this study with quick andreliable detection of dynamic changes, even in then presence of some instrumentalnoise.The proposed method with the correlation dimension as test statistic was the onlymethod applied to the real time series data. Here the method was successful indistinguishing between two different corrosion phenomena. The proposed methodwith the correlation dimension as test statistic appears to be a promising approach tothe detection of dynamic change in nonlinear systems.
机译:模型预测控制已成为现代过程工厂中大多数控制策略的标准。它严重依赖于过程模型,该过程模型可能并不总是基本可用,但可以从时间序列分析中获得。任何控制策略的第一步都是识别或检测系统中的更改(如果存在)。检测这种变化(称为动态变化)是本研究的主要目标。在文献中,已经开发并记录了各种各样的变化检测方法。这些方法中的大多数都假设了系统的一些先验知识,而本研究并非如此。此外,基于过程历史数据的大量变更检测方法都假定过程变量之间存在线性关系,并且受到环境的随机影响。这些方法已经发展成熟,但是在应用于非线性动力学系统时却失败了,这是本文研究的重点。大量针对非线性系统设计的方法利用了在相空间中定义的统计量,从而导致了本研究方法的提出。相关维数是在相空间中定义的不变度量,对系统中的动态变化敏感。该方法采用相关维数作为检验统计量,采用移动窗口法检测非线性系统中的动态变化。该方法与两种不同方法的动态变化检测方法一起用于模拟时间序列数据。考虑的第一种方法是基于奇异频谱分析的变化点算法。第二种应用于数据的方法是相互交叉预测,它利用了多层感知器网络的预测误差。将提出的方法应用于数据后,对这三种方法的性能进行了评估。通过对三个具有数学方程式的系统进行仿真并观察一个真实过程,获得了时间序列数据,即腐蚀系统产生的电化学噪声。本研究中考虑的三个模拟系统是Belousov-Zhabotinsky反应,自催化过程和掠食性捕食模型。通过观察单个变量获得的时间序列被认为是该系统可获得的唯一信息。在将变化检测方法应用于时间序列数据之前,先通过延时嵌入重建系统的相空间。这三种方法均能够识别时间序列数据的动态变化。但是,更改点检测算法确实产生了其检测统计信息的偶然行为,从而导致遇到了多个错误警报。此行为可能是由于时间序列数据的分布不正常。杂乱无章的行为降低了方法检测变化的能力,混乱和仪器噪声或测量噪声的存在加剧了该方法的变化。相互交叉预测是检测动态变化的非常成功的方法,并且对测量噪声非常鲁棒。但是,它确实需要训练多层感知器网络并进行其他耗时的计算。所提出的使用相关维数作为检验统计量并使用移动窗口方法的算法在检测动态变化中非常有用。即使在存在某些仪器噪声的情况下,该算法在本研究中考虑的系统上也能获得最佳结果,能够快速可靠地检测动态变化。所提出的以相关维数作为检验统计量的方法是应用于实时序列数据的唯一方法。在此,该方法成功地区分了两种不同的腐蚀现象。提出的以相关维数作为检验统计量的方法似乎是检测非线性系统动态变化的一种有前途的方法。

著录项

  • 作者

    Botha Paul Jacobus;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号