首页> 外文OA文献 >Time series modeling of surface EMG based hand manipulation identification via expectation maximization algorithm
【2h】

Time series modeling of surface EMG based hand manipulation identification via expectation maximization algorithm

机译:基于期望最大化算法的表面肌电图手动识别时间序列建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we focus on the method of employing the expectation maximization (EM) algorithm to the modeling of surface electromyography (sEMG) signals based on hand manipulations via available time series of the measured data. The model for the sEMG is developed as a hidden Markov model (HMM) framework. In order to represent dynamical characteristics of sEMG when multichannel observation sequence are given, a stochastic dynamic process is included in it based on the maximum likelihood estimation (MLE) principle. By using the EM algorithm, the hidden model parameters and the feature of the signal can be identified easily. Ten people of different time series data sets of different hand grasps and in-hand manipulations captured from different subjects are collected. The two different classifiers were used to recognize these hand manipulation signal. Compared with time and time–frequency domains and their combination feature, the proposed algorithm of the inferred model gains better performance and demonstrates the effectiveness. The average identification accuracy rate is 93% and the maximum classification ratio is 100%.
机译:在本文中,我们着重于利用期望最大化(EM)算法基于手操纵通过测量数据的可用时间序列对表面肌电图(sEMG)信号建模的方法。 sEMG的模型是作为隐马尔可夫模型(HMM)框架开发的。为了表示给定多通道观测序列时sEMG的动态特性,基于最大似然估计(MLE)原理在其中包括了随机动态过程。通过使用EM算法,可以轻松识别隐藏的模型参数和信号特征。收集了十个人,这些人从不同的对象抓取的不同时间序列数据集,不同的手部抓握和手中的操作。使用两个不同的分类器来识别这些手操作信号。与时域和时频域及其组合特征相比,所提模型的算法获得了更好的性能并证明了其有效性。平均识别准确率为93%,最大分类率为100%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号