首页> 外文OA文献 >A SimILS-based methodology for a portfolio optimization problem with stochastic returns
【2h】

A SimILS-based methodology for a portfolio optimization problem with stochastic returns

机译:基于simILs的方法,用于具有随机收益的投资组合优化问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Combinatorial optimization has been at the heart of financial and risk management. This body of research is dominated by the mean-variance efficient frontier (MVEF) that solves the portfolio optimization problem (POP), pioneered by Harry Markowitz. The classical version of the POP minimizes risk for a given expected return on a portfolio of assets by setting the weights of those assets. Most authors deal with the variability of returns and covariances by employing expected values. In contrast, we propose a simheuristic methodology (combining the simulated annealing metaheuristic with Monte Carlo simulation), in which returns and covariances are modeled as random variables following specific probability distributions. Our methodology assumes that the best solution for a scenario with constant expected values may have poor performance in a dynamic world. A computational experiment is carried out to illustrate our approach.
机译:组合优化一直是财务和风险管理的核心。这项研究主要由均方差有效前沿(MVEF)主导,该前沿解决了哈里·马科维茨(Harry Markowitz)提出的投资组合优化问题(POP)。 POP的经典版本通过设置资产的权重来最大程度地降低资产组合给定预期回报的风险。大多数作者通过采用期望值来处理收益和协方差的变化。相反,我们提出了一种模拟启发式方法(将模拟退火元启发式方法与蒙特卡洛模拟相结合),其中将收益率和协方差建模为遵循特定概率分布的随机变量。我们的方法假设,对于具有恒定期望值的方案而言,最佳解决方案在动态环境中的性能可能会很差。进行了计算实验以说明我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号