首页> 外文OA文献 >Power system parameters forecasting using Hilbert-Huang transform and machine learning
【2h】

Power system parameters forecasting using Hilbert-Huang transform and machine learning

机译:基于Hilbert-Huang变换和机器学习的电力系统参数预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert-Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to rank the importance of variables employed in the forecasting models. The Mean Decrease Gini index is employed as an impurity function. The resulting hybrid forecasting models employ the radial basis function neural network and support vector regression. A part from introduction and references the paper is organized as follows. The second section presents the background and the review of several approaches for short-term forecasting of power system parameters. In the third section a hybrid machine learningbased algorithm using Hilbert-Huang transform is developed for short-term forecasting of power system parameters. Fourth section describes the decision tree learning algorithms used for the issue of variables importance. Finally in section six the experimental results in the following electric power problems are presented: active power flow forecasting, electricity price forecasting and for the wind speed and direction forecasting.
机译:开发了一种新颖的混合数据驱动方法来预测电力系统参数,目的是提高非平稳时间序列的短期预测研究的效率。所提出的方法基于模式分解以及使用Hilbert-Huang变换和机器学习算法对初始追溯数据进行特征分析的基础。研究了随机森林和梯度增强树的学习技术。决策树技术用于对预测模型中使用的变量的重要性进行排名。平均降低基尼系数用作杂质函数。所得的混合预测模型采用径向基函数神经网络和支持向量回归。引言和参考文件的一部分组织如下。第二部分介绍了电力系统参数的短期预测的背景和几种方法的概述。在第三部分中,开发了一种使用Hilbert-Huang变换的基于混合机器学习的算法,用于电力系统参数的短期预测。第四部分描述了用于变量重要性问题的决策树学习算法。最后,在第六部分中,提出了以下电力问题的实验结果:有功潮流预测,电价预测以及风速和风向预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号