首页> 外文OA文献 >Uniformly convergent finite element and finite difference methods for singularly perturbed ordinary differential equations
【2h】

Uniformly convergent finite element and finite difference methods for singularly perturbed ordinary differential equations

机译:奇摄动常微分方程的一致收敛有限元和有限差分方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis is concerned with uniformly convergent finite element and finite difference methods for numerically solving singularly perturbed two-point boundary value problems. We examine the following four problems: (i) high order problem of reaction-diffusion type; (ii) high order problem of convection-diffusion type; (iii) second order interior turning point problem; (iv) semilinear reaction-diffusion problem. Firstly, we consider high order problems of reaction-diffusion type and convection-diffusion type. Under suitable hypotheses, the coercivity of the associated bilinear forms is proved and representation results for the solutions of such problems are given. It is shown that, on an equidistant mesh, polynomial schemes cannot achieve a high order of convergence which is uniform in the perturbation parameter. Piecewise polynomial Galerkin finite element methods are then constructed on a Shishkin mesh. High order convergence results, which are uniform in the perturbation parameter, are obtained in various norms. Secondly, we investigate linear second order problems with interior turning points. Piecewise linear Galerkin finite element methods are generated on various piecewise equidistant meshes designed for such problems. These methods are shown to be convergent, uniformly in the singular perturbation parameter, in a weighted energy norm and the usual L2 norm. Finally, we deal with a semilinear reaction-diffusion problem. Asymptotic properties of solutions to this problem are discussed and analysed. Two simple finite difference schemes on Shishkin meshes are applied to the problem. They are proved to be uniformly convergent of second order and fourth order respectively. Existence and uniqueness of a solution to both schemes are investigated. Numerical results for the above methods are presented.
机译:本文涉及均匀收敛的有限元和有限差分方法,用数值方法求解奇摄动的两点边值问题。我们研究以下四个问题:(i)反应扩散型的高阶问题; (ii)对流扩散型的高阶问题; (iii)二阶内部转折点问题; (iv)半线性反应扩散问题。首先,我们考虑了反应扩散型和对流扩散型的高阶问题。在适当的假设下,证明了相关双线性形式的矫顽力,并给出了解决此类问题的表示结果。结果表明,在等距网格上,多项式方案无法获得高阶收敛性,这在摄动参数上是一致的。然后在Shishkin网格上构造分段多项式Galerkin有限元方法。在各种规范中获得了摄动参数一致的高阶收敛结果。其次,我们研究具有内部转折点的线性二阶问题。在针对这些问题设计的各种分段等距网格上生成分段线性Galerkin有限元方法。这些方法在加权能量范数和通常的L2范数上在奇异摄动参数上一致收敛。最后,我们处理一个半线性反应扩散问题。讨论并分析了该问题解的渐近性质。将两个简单的Shishkin网格上的有限差分方案应用于该问题。证明它们分别是二阶和四阶的一致收敛。研究了两种方案的解决方案的存在性和唯一性。给出了上述方法的数值结果。

著录项

  • 作者

    Sun Guangfu;

  • 作者单位
  • 年度 1993
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号