首页> 外文OA文献 >Cost Effective Computer Vision Based Structural Health Monitoring using Adaptive LMS Filters
【2h】

Cost Effective Computer Vision Based Structural Health Monitoring using Adaptive LMS Filters

机译:使用自适应LMS滤波器的具有成本效益的基于计算机视觉的结构健康监测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural health monitoring (SHM) algorithms based on Adaptive Least MeanSquares (LMS) filtering theory can directly identify time-varying changes instructural stiffness in real time in a computationally efficient fashion. However, thebest metrics of seismic structural damage are related to permanent and plasticdeformations. The recent work done by the authors uses LMS-based SHM methodswith a baseline non-linear Bouc-Wen structural model to directly identify changesin stiffness (modelling or construction error), as well as plastic or permanentdeflections, in real-time. The algorithm validated, in silico, on a non-linear sheartypeconcrete structure using noise-free simulation-derived structural responses.In this paper, efficiency of the proposed SHM algorithm in identifying stiffnesschanges and plastic/permanent deflections under different ground motions isassessed using a suite of 20 different ground acceleration records. The results showthat even with a fixed filter tuning parameters, the proposed LMS SHM algorithmidentifies stiffness changes to within 10% of true value in 2.0 seconds. Permanentdeflection is identified to within 14% of the actual as-modelled value using noisefreesimulation-derived structural responses.Accuracy of the proposed SHM algorithm mainly relies on providing high-speedstructural responses. However, due to a variety of practical constraints, direct highfrequency measurement of displacement and velocity is not typically possible. Thisstudy explores the idea that emerging high speed line scan cameras can offer arobust and high speed displacement measure required for the modified LMS-basedSHM algorithm proposed for non-linear yielding structures undergoing seismicexcitation, and can be used for more precise estimation of the velocity usingmeasured acceleration and displacement data. The displacement measurementmethod is tested to capture displacements of a computer-controlled cart under 20 different displacement records. The method is capable of capturing displacementsof the cart with less than 2.2% error.
机译:基于自适应最小均方(LMS)过滤理论的结构健康监测(SHM)算法可以以计算有效的方式直接实时地实时识别时变变化的教学刚度。但是,地震结构破坏的最佳指标与永久变形和塑性变形有关。作者最近所做的工作使用基于LMS的SHM方法和基线非线性Bouc-Wen结构模型来实时直接识别刚度的变化(建模或构造误差)以及塑性变形或永久变形。该算法在计算机上使用无噪声仿真得出的结构响应在非线性剪切型混凝土结构上进行了验证。本文使用套件评估了所提出的SHM算法在识别不同地面运动下的刚度变化和塑性/永久挠度方面的效率。 20种不同的地面加速度记录。结果表明,即使使用固定的滤波器调整参数,所提出的LMS SHM算法也可以在2.0秒内将刚度变化识别为真实值的10%以内。使用无噪声仿真得出的结构响应将永久挠度确定为实际建模值的14%以内。所提出的SHM算法的准确性主要取决于提供高速结构响应。但是,由于各种实际限制,通常无法直接对位移和速度进行高频测量。本研究探索了这样一种想法,即新兴的高速线扫描相机可以提供经过改进的基于LMS的SHM算法所需的鲁棒和高速位移测量方法,该算法是针对非线性屈服结构进行地震激励而提出的,并且可以用于通过测得的加速度来更精确地估算速度和位移数据。测试了位移测量方法,以捕获20种不同位移记录下计算机控制推车的位移。该方法能够以小于2.2%的误差捕获推车的位移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号