首页> 外文OA文献 >3-D Scene Reconstruction from Multiple Photometric Images
【2h】

3-D Scene Reconstruction from Multiple Photometric Images

机译:从多个光度图像重建3D场景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis deals with the problem of three dimensional scene reconstruction from multiple camera images. This is a well established problem in computer vision and has been significantly researched. In recent years some excellent results have been achieved, however existing algorithms often fall short of many biological systems in terms of robustness and generality. The aim of this research was to develop improved algorithms for reconstructing 3D scenes, with a focus on accurate system modelling and correctly dealing with occlusions. With scene reconstruction the objective is to infer scene parameters describing the 3D structure of the scene from the data given by camera images. This is an illposed inverse problem, where an exact solution cannot be guaranteed. The use of a statistical approach to deal with the scene reconstruction problem is introduced and the differences between maximum a priori (MAP) and minimum mean square estimate (MMSE) considered. It is discussed how traditional stereo matching can be performed using a volumetric scene model. An improved model describing the relationship between the camera data and a discrete model of the scene is presented. This highlights some of the common causes of modelling errors, enabling them to be dealt with objectively. The problems posed by occlusions are considered. Using a greedy algorithm the scene is progressively reconstructed to account for visibility interactions between regions and the idea of a complete scene estimate is established. Some simple and improved techniques for reliably assigning opaque voxels are developed, making use of prior information. Problems with variations in the imaging convolution kernel between images motivate the development of a pixel dissimilarity measure. Belief propagation is then applied to better utilise prior information and obtain an improved global optimum. A new volumetric factor graph model is presented which represents the joint probability distribution of the scene and imaging system. By utilising the structure of the local compatibility functions, an efficient procedure for updating the messages is detailed. To help convergence, a novel approach of accentuating beliefs is shown. Results demonstrate the validity of this approach, however the reconstruction error is similar or slightly higher than from the Greedy algorithm. To simplify the volumetric model, a new approach to belief propagation is demonstrated by applying it to a dynamic model. This approach is developed as an alternative to the full volumetric model because it is less memory and computationally intensive. Using a factor graph, a volumetric known visibility model is presented which ensures the scene is complete with respect to all the camera images. Dynamic updating is also applied to a simpler single depth-map model. Results show this approach is unsuitable for the volumetric known visibility model, however, improved results are obtained with the simple depth-map model.
机译:本文研究了从多个摄像机图像重建三维场景的问题。这是计算机视觉中一个公认的问题,已经得到了广泛的研究。近年来,已经取得了一些优异的结果,但是,就鲁棒性和通用性而言,现有的算法通常不符合许多生物系统。这项研究的目的是开发用于重建3D场景的改进算法,重点是准确的系统建模和正确处理遮挡。通过场景重建,目标是从摄像机图像给出的数据中推断出描述场景3D结构的场景参数。这是一个不适的反问题,无法保证确切的解决方案。介绍了使用统计方法来处理场景重建问题的方法,并考虑了最大先验(MAP)和最小均方估计(MMSE)之间的差异。讨论了如何使用体积场景模型执行传统的立体声匹配。提出了一种改进的模型,该模型描述了相机数据和场景的离散模型之间的关系。这突出显示了建模错误的一些常见原因,从而可以客观地对其进行处理。考虑了由遮挡物引起的问题。使用贪婪算法,逐步重建场景以解决区域之间的可见性交互作用,并建立完整场景估计的想法。利用先验信息,开发了一些简单且经过改进的技术来可靠地分配不透明体素。图像之间的成像卷积核的变化问题促使像素相异性度量的发展。然后将信念传播应用于更好地利用先验信息并获得改进的全局最优值。提出了一种新的体积因子图模型,该模型代表了场景和成像系统的联合概率分布。通过利用本地兼容性功能的结构,详细描述了更新消息的有效过程。为了帮助融合,显示了一种强调信念的新颖方法。结果证明了该方法的有效性,但是重建误差与Greedy算法相似或略高。为了简化体积模型,将信念传播应用于动态模型演示了一种新的信念传播方法。这种方法被开发为完整体积模型的替代方法,因为它的内存较少且计算量很大。使用一个因子图,提出了一个体积已知的可见性模型,该模型可确保所有摄像机图像的场景都是完整的。动态更新还应用于更简单的单个深度图模型。结果表明,这种方法不适用于体积已知的可见性模型,但是,使用简单的深度图模型可以获得更好的结果。

著录项

  • 作者

    Forne Christopher Jes;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号