首页> 外文OA文献 >Mechanisms of Molecular Brush Inhibition of Protein Adsorption onto Stainless Steel Surface
【2h】

Mechanisms of Molecular Brush Inhibition of Protein Adsorption onto Stainless Steel Surface

机译:分子刷抑制蛋白质吸附在不锈钢表面的机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein-resistant ("non-fouling") surfaces are particularly important in manyfields such as medical engineering, dentistry, pharmaceutical processes,bioprocessing, dairy and food manufacturing. Poly(ethylene glycol) (PEG)immobilized onto surfaces has been shown to confer high resistance to proteinadsorption. The reasons for variable performance and optimal protein repellency ofPEG layers have been the subject of much discussion; however there remains nogeneral consensus on the molecular mechanisms underlying the protein resistanceachieved with PEG coatings.The main objective of this study was to inhibit protein adsorption onto astainless steel surface. This objective requires an exploration of the mechanisms ofprotein adsorption on a stainless steel surface and how these mechanisms aremodified when a surface inhibits the adsorption of proteins. The stainless steelsurface has been chosen as a substrate as it is a commonly used material in manyrelevant applications such as in the dairy industry, in food processing and in clinicaluses.In order to elucidate the mechanisms of protein-PEG interactions theadsorption of lysozyme, β-casein, apo α-lactalbumin, holo α-lactalbumin and β-lactoglobulin onto various PEG-grafted surfaces was explored. The adsorption wasconducted at room temperature and at 40 C. The modification of bare SS surfacesand adsorption kinetics of proteins on unmodified and modified surfaces (i.e. barestainless steel and PEG surfaces) has been done in-situ and studied by means of aquartz crystal microbalance with dissipation sensing (QCM-D). The merit of themodification methods studied, compared to those of most published methods is thatthe process of modification is simple and easy, being done simply by passing asolution over the surface. The methods also do not involve any harmful or hazardouschemicals and thus are safe to be used even in food processing plants.The PEG coated surfaces prepared in this study were able to inhibit adsorptionof β-casein, α-lactalbumin (calcium enriched) and lysozyme proteins especially; thelowest adsorption of these achieved as a percentage of that on bare stainless steel, β-casein, 45 %, holo α-lactalbumin, 11 % and lysozyme, 1 %. By contrast, andunexpectedly, PEG molecules enhanced the adsorption of apo α-lactalbumin (theform without calcium). It is suggested that the PEG to apo α- lactalbuminhydrophobic interaction plays a dominant role which leads to protein aggregation atthe surface, for this latter observation. The results have shown that protein stability(i.e. whether it is a soft or a hard protein) greatly influenced the inhibitionperformance of PEG surfaces. It is apparently more difficult to prevent the adsorptionof soft proteins than hard proteins. This appears to be because soft proteins tend todenature regardless of the surface properties (i.e. hydrophilic or hydrophobic) andattach more effectively in their unfolded state. The results also indicated that higherPEG grafting density is not necessarily reflected in better protein inhibition.At the end of the project, a novel method of surface modification wasdeveloped. In this method, stainless steel surfaces were modified by coating thesurface with a protein layer (as a base) then followed by the attachment of PEGmolecules. Interestingly, the method developed showed an excellent potential forpreventing further protein adsorption at room and body temperatures. The adsorptionof β-casein, lysozyme, holo α-lactalbumin and β-lactoglobulin on the SS-lysozyme-PEG surfaces was down to about 3, 1, 4 and 0.4 %, respectively compared to that onthe bare surface. More interestingly and surprisingly also, there was almost zeroadsorption on those surfaces of mixed protein and single protein solutions at theconcentration found in milk. The method is believed to have the potential to beapplied in the pharmaceutical industry, in the biosensor field and in artificial medicalimplants with some modifications perhaps to suit the application.The modelling results demonstrated negative free energy changes onadsorption, consistent with the studied proteins being thermodynamically favoured toadsorb on bare SS. The adsorption of proteins was an endothermic process. Theproteins also showed large positive entropy changes on adsorption, indicatingadsorption-induced denaturation mechanisms (especially apo α-lactalbumin protein).At high temperatures and concentrations, the adsorption was governed first bydiffusion and later by surface kinetics, whereas under lower temperature (i.e. roomtemperature) and low concentration conditions (i.e. 0.1 g / L) the adsorption was ableto be described solely by surface-reactions.
机译:耐蛋白质(“防污”)表面在许多领域尤其重要,例如医学工程,牙科,制药工艺,生物加工,乳制品和食品制造。固定在表面的聚乙二醇(PEG)已显示出对蛋白质吸附的高抵抗力。 PEG层的可变性能和最佳蛋白排斥性的原因已成为许多讨论的主题;然而,关于PEG涂层获得的蛋白质抗性的分子机制尚无普遍共识。这项研究的主要目的是抑制蛋白质吸附在不锈钢表面。该目标需要探索蛋白质在不锈钢表面上的吸附机理,以及当表面抑制蛋白质吸附时如何改变这些机理。选择不锈钢表面作为基材是因为它是许多相关应用的常用材料,例如在乳制品业,食品加工和临床应用中。为了阐明蛋白质-PEG相互作用的机理,溶菌酶,β-探索了酪蛋白,载脂蛋白α-乳白蛋白,全α-乳白蛋白和β-乳球蛋白在各种PEG接枝表面上的作用。吸附在室温和40°C下进行。 SS裸露表面的修饰以及未修饰和修饰的表面(即不锈钢和PEG表面)上蛋白质的吸附动力学已就地完成,并通过带有耗散传感(QCM-D)的石英晶体微量天平进行了研究。与大多数已公开方法相比,所研究的改性方法的优点在于,改性过程简单易行,只需将溶液通过表面即可完成。该方法也不涉及任何有害或有害化学物质,因此即使在食品加工厂中也可以安全使用。本研究中制备的PEG涂层表面能够抑制β-酪蛋白,α-乳白蛋白(富钙)和溶菌酶蛋白的吸附。特别;这些吸附剂的最低吸附率是裸不锈钢上45%的β-酪蛋白,11%的全α-乳白蛋白和1%的溶菌酶的吸附率。相比之下,出乎意料的是,PEG分子增强了载脂蛋白α-乳清蛋白(无钙形式)的吸附。对于后一种观察,建议PEG与载脂蛋白α-乳清蛋白疏水相互作用起主导作用,导致表面蛋白质聚集。结果表明,蛋白质稳定性(即它是软蛋白质还是硬蛋白质)极大地影响了PEG表面的抑制性能。阻止软蛋白的吸附显然比硬蛋白更难。这似乎是因为软蛋白倾向于变性,而与表面特性(即亲水性或疏水性)无关,并且在其展开状态下更有效地附着。结果还表明,更高的PEG接枝密度并不一定反映在更好的蛋白质抑制上。在项目结束时,开发了一种新的表面修饰方法。在这种方法中,不锈钢表面的修饰是通过在表面涂上一层蛋白质层(作为基础),然后再附着PEG分子。有趣的是,开发的方法显示出极好的潜力,可以防止在室温和人体温度下进一步吸附蛋白质。与裸表面相比,SS-溶菌酶-PEG表面的β-酪蛋白,溶菌酶,全α-乳白蛋白和β-乳球蛋白的吸附率分别降低了约3%,1、4%和0.4%。更有趣和令人惊讶的是,在牛奶中发现的浓度下,混合蛋白质和单一蛋白质溶液在那些表面上的吸附几乎为零。据信该方法具有在制药业,生物传感器领域和人工医学植入物中应用的潜力,并可能进行了一些修改以适合该应用。建模结果表明吸附时自由能发生负向变化,这与所研究的蛋白质在热力学上受到青睐相一致。吸附在裸露的SS上。蛋白质的吸附是一个吸热过程。蛋白质在吸附时还表现出较大的正熵变化,表明了吸附诱导的变性机理(特别是载脂蛋白α-乳白蛋白)。在高温和高浓度下,吸附首先由扩散控制,然后由表面动力学控制,而在低温(即室温)下控制。在低浓度条件下(即0.1 g / L),吸附只能通过表面反应来描述。

著录项

  • 作者

    Ngadi Norzita;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号