首页> 外文OA文献 >Improved seismic hazard model with application to probabilistic seismic demand analysis
【2h】

Improved seismic hazard model with application to probabilistic seismic demand analysis

机译:改进的地震灾害模型及其在概率地震需求分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An improved seismic hazard model for use in performance-based earthquake engineering is presented. The model is an improved approximation from the so-called 'power law' model, which is linear in log-log space. The mathematics of the model and uncertainty incorporation is briefly discussed. Various means of fitting the approximation to hazard data derived from probabilistic seismic hazard analysis are discussed, including the limitations of the model. Based on these 'exact' hazard data for major centres in New Zealand, the parameters for the proposed model are calibrated. To illustrate the significance of the proposed model, a performance-based assessment is conducted on a typical bridge, via probabilistic seismic demand analysis. The new hazard model is compared to the current power law relationship to illustrate its effects on the risk assessment. The propagation of epistemic uncertainty in the seismic hazard is also considered. To allow further use of the model in conceptual calculations, a semi-analytical method is proposed to calculate the demand hazard in closed form. For the case study shown, the resulting semi-analytical closed form solution is shown to be significantly more accurate than the analytical closed-form solution using the power law hazard model, capturing the 'exact' numerical integration solution to within 7% accuracy over the entire range of exceedance rate
机译:提出了一种改进的基于性能的地震工程中的地震灾害模型。该模型是所谓的“幂律”模型的改进近似,该模型在对数-对数空间中是线性的。简要讨论了该模型的数学和不确定性合并。讨论了将近似值拟合到从概率地震危险性分析得出的危险性数据的各种方法,包括模型的局限性。基于这些针对新西兰主要中心的“精确”危害数据,对提出的模型的参数进行了校准。为了说明所提出模型的重要性,通过概率地震需求分析在典型桥梁上进行了基于性能的评估。将新的危害模型与当前的幂律关系进行比较,以说明其对风险评估的影响。还考虑了地震危险中认知不确定性的传播。为了允许在概念计算中进一步使用该模型,提出了一种半分析方法来以封闭形式计算需求风险。对于所示的案例研究,显示出使用幂律风险模型得到的半解析封闭式解决方案比解析封闭式解决方案显着更高的精度,将“精确”数值积分解决方案的精度提高了7%。整个范围的超标率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号