首页> 外文OA文献 >Exploiting data sparsity in parallel magnetic resonance imaging
【2h】

Exploiting data sparsity in parallel magnetic resonance imaging

机译:在并行磁共振成像中利用数据稀疏性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetic resonance imaging (MRI) is a widely employed imaging modality that allows observation of the interior of human body. Compared to other imaging modalities suchas the computed tomography (CT), MRI features a relatively long scan time that gives rise to many potential issues. The advent of parallel MRI, which employs multiple receivercoils, has started a new era in speeding up the scan of MRI by reducing the number of data acquisitions. However, the finally recovered images from under-sampled data sets oftensuffer degraded image quality.This thesis explores methods that incorporate prior knowledge of the image to be reconstructed to achieve improved image recovery in parallel MRI, following the philosophy that ‘if some prior knowledge of the image to be recovered is known, the image could be recovered better than without’. Specifically, the prior knowledge of image sparsity is utilized. Image sparsity exists in different domains. Image sparsity in the image domain refers to the fact that the imaged object only occupies a portion of the imaging field of view; image sparsity may also exist in a transform domain for which there is a high level of energyconcentration in the image transform. The use of both types of sparsity is considered in this thesis.There are three major contributions in this thesis. The first contribution is the development of ‘GUISE’. GUISE employs an adaptive sampling design method that achieves better exploitation of image domain sparsity in parallel MRI. Secondly, the development of ‘PBCS’ and ‘SENSECS’. PBCS achieves better exploitation of transform domain sparsity by incorporating a prior estimate of the image to be recovered. SENSECS is an application of PBCS that achieves better exploitation of transform domain sparsity in parallel MRI. The third contribution is theimplementation of GUISE and PBCS in contrast enhanced MR angiography (CE MRA). In their applications in CE MRA, GUISE and PBCS share the common ground of exploiting the high sparsity of the contrast enhanced angiogram.The above developments are assessed in various ways using both simulated and experimental data. The potential extensions of these methods are also suggested.
机译:磁共振成像(MRI)是一种广泛使用的成像方式,可以观察人体内部。与其他成像方式(例如计算机断层扫描(CT))相比,MRI具有相对较长的扫描时间,这会引起许多潜在的问题。并行MRI的出现采用了多个接收线圈,通过减少数据采集的数量,加快了MRI扫描的速度,从而开创了一个新时代。但是,从欠采样数据集中最终恢复的图像通常会降低图像质量。本文探索了一种方法,该方法结合了要重建的图像的先验知识,从而在并行MRI中遵循了“如果某些先验知识”的哲学。已知要恢复的图像,可以比没有图像更好地恢复图像。具体地,利用图像稀疏性的先验知识。图像稀疏性存在于不同的域中。图像域中的图像稀疏度是指被成像的对象仅占据成像视场的一部分;图像稀疏性也可能存在于图像变换中能量集中度较高的变换域中。本文考虑了两种稀疏性的使用。本论文有三个主要贡献。第一个贡献是开发了“ GUISE”。 GUISE采用了一种自适应采样设计方法,可以在并行MRI中更好地利用图像域稀疏性。其次,“ PBCS”和“ SENSECS”的发展。 PBCS通过合并要恢复图像的先前估计,可以更好地利用变换域稀疏性。 SENSECS是PBCS的一种应用,可以在并行MRI中更好地利用变换域稀疏性。第三个贡献是在对比增强的MR血管造影(CE MRA)中实现GUISE和PBCS。在SE MRA中的应用中,GUISE和PBCS具有利用造影剂增强血管造影的高稀疏性的共同基础。以上的发展情况通过模拟和实验数据以各种方式进行了评估。还建议了这些方法的潜在扩展。

著录项

  • 作者

    Wu Bing;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号